N. Ivanichok, O. Ivanichok, I. Budzulyak, P. Kolkovskyi, B. Rachiy, O.A. Vyshnevskyi, D. Borchuk, I.I. Ivaniv, A.M. Soltys
{"title":"研究植物生物质碳化温度对碳材料电化学性能的影响","authors":"N. Ivanichok, O. Ivanichok, I. Budzulyak, P. Kolkovskyi, B. Rachiy, O.A. Vyshnevskyi, D. Borchuk, I.I. Ivaniv, A.M. Soltys","doi":"10.15330/pcss.25.1.57-64","DOIUrl":null,"url":null,"abstract":"Porous carbon materials (PСM) with different pore distributions in size and size of the specific surface area up to 250 m2/g were obtained by changing the carbonization temperature of plant biomass, namely walnut shells. The electrodes of electrochemical supercapacitors are formed based on the obtained carbon materials. The electrochemical behavior of PCM in 33% aqueous KOH solution has been studied by cyclic voltammetry and galvanostatic discharge-discharge methods and the value of their specific capacitance. The physicochemical processes occurring at the carbon electrode/electrolyte interface have been investigated by the method of impedance spectroscopy.","PeriodicalId":509433,"journal":{"name":"Physics and Chemistry of Solid State","volume":"119 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect of carbonization temperature of plant biomass on the electrochemical properties of carbon material\",\"authors\":\"N. Ivanichok, O. Ivanichok, I. Budzulyak, P. Kolkovskyi, B. Rachiy, O.A. Vyshnevskyi, D. Borchuk, I.I. Ivaniv, A.M. Soltys\",\"doi\":\"10.15330/pcss.25.1.57-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porous carbon materials (PСM) with different pore distributions in size and size of the specific surface area up to 250 m2/g were obtained by changing the carbonization temperature of plant biomass, namely walnut shells. The electrodes of electrochemical supercapacitors are formed based on the obtained carbon materials. The electrochemical behavior of PCM in 33% aqueous KOH solution has been studied by cyclic voltammetry and galvanostatic discharge-discharge methods and the value of their specific capacitance. The physicochemical processes occurring at the carbon electrode/electrolyte interface have been investigated by the method of impedance spectroscopy.\",\"PeriodicalId\":509433,\"journal\":{\"name\":\"Physics and Chemistry of Solid State\",\"volume\":\"119 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Solid State\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/pcss.25.1.57-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.25.1.57-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the effect of carbonization temperature of plant biomass on the electrochemical properties of carbon material
Porous carbon materials (PСM) with different pore distributions in size and size of the specific surface area up to 250 m2/g were obtained by changing the carbonization temperature of plant biomass, namely walnut shells. The electrodes of electrochemical supercapacitors are formed based on the obtained carbon materials. The electrochemical behavior of PCM in 33% aqueous KOH solution has been studied by cyclic voltammetry and galvanostatic discharge-discharge methods and the value of their specific capacitance. The physicochemical processes occurring at the carbon electrode/electrolyte interface have been investigated by the method of impedance spectroscopy.