为具有拓扑特征的非线性超材料引入局部谐振器

Joshua LeGrande, A. Malla, M. Bukhari, Oumar Barry
{"title":"为具有拓扑特征的非线性超材料引入局部谐振器","authors":"Joshua LeGrande, A. Malla, M. Bukhari, Oumar Barry","doi":"10.1115/1.4064726","DOIUrl":null,"url":null,"abstract":"\n Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasiperiodic metamaterial with periodic local resonator attachments. We model a 1-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasiperiodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasiperiodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"86 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction of Local Resonators to a Nonlinear Metamaterial with Topological Features\",\"authors\":\"Joshua LeGrande, A. Malla, M. Bukhari, Oumar Barry\",\"doi\":\"10.1115/1.4064726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasiperiodic metamaterial with periodic local resonator attachments. We model a 1-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasiperiodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasiperiodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.\",\"PeriodicalId\":506262,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"86 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在非线性拓扑超材料方面的研究揭示了许多有用的特性,例如与振幅相关的局部振动模式和非互惠波传播。然而,迄今为止,还没有任何研究将局部谐振器应用到这些系统中。本研究试图通过研究带有周期性局部谐振器附件的非线性准周期超材料来填补这一空白。我们将一维超材料晶格建模为带有耦合局部谐振器的弹簧-质量链。利用非线性连接弹簧中的准周期调制来实现拓扑特征。为了进行比较,还模拟了不带局部谐振器的类似系统。分析和数值方法都被用来研究这个系统。通过多尺度扰动法,分析确定了拟议系统无限链的色散关系。将此分析解与有限链响应进行比较,使用谐波平衡法进行估算,并进行数值求解。由此得出的带状结构和模态振型被用来研究准周期参数和激励振幅对存在和不存在局部谐振器的系统行为的影响。具体来说,研究确定了局部谐振器对拓扑特征(如边缘模式)的影响,证明了主单元和局部谐振器都出现了微带隙和多个局部边缘态。这些结果凸显了拓扑超材料中局部谐振和非线性之间的相互作用,首次证明了在存在振幅不变带隙的同时,还存在振幅相关的拓扑带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction of Local Resonators to a Nonlinear Metamaterial with Topological Features
Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasiperiodic metamaterial with periodic local resonator attachments. We model a 1-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasiperiodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasiperiodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信