{"title":"利用合成射流致动器产生扭矩","authors":"Vardhan Mittal, Venugopal Arumuru","doi":"10.1177/09544089241230267","DOIUrl":null,"url":null,"abstract":"This article presents a novel method of utilizing the thrust generated by synthetic jet actuators to generate torque. Piezoelectric-based synthetic jet actuators were used to create a device with two isolated cavities and orifices. Weight balance and hotwire anemometry were used to quantify the thrust generated by the synthetic jet actuator. Each orifice provides a maximum thrust of 0.15gf, thereby generating a net maximum torque of 17.17gf mm. The torque generated can be used to produce a rotary motion. Such a novel device may be useful where a high-momentum rotary jet may be employed for heat transfer and mixing enhancement.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"36 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torque generation using synthetic jet actuators\",\"authors\":\"Vardhan Mittal, Venugopal Arumuru\",\"doi\":\"10.1177/09544089241230267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel method of utilizing the thrust generated by synthetic jet actuators to generate torque. Piezoelectric-based synthetic jet actuators were used to create a device with two isolated cavities and orifices. Weight balance and hotwire anemometry were used to quantify the thrust generated by the synthetic jet actuator. Each orifice provides a maximum thrust of 0.15gf, thereby generating a net maximum torque of 17.17gf mm. The torque generated can be used to produce a rotary motion. Such a novel device may be useful where a high-momentum rotary jet may be employed for heat transfer and mixing enhancement.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"36 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241230267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241230267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种利用合成射流致动器产生的推力来产生扭矩的新方法。压电式合成射流致动器被用来制造一个具有两个隔离腔和孔的装置。重量平衡和热线风速测量被用来量化合成射流致动器产生的推力。每个孔口可提供 0.15gf 的最大推力,从而产生 17.17gf mm 的净最大扭矩。产生的扭矩可用于产生旋转运动。这种新颖的装置可用于利用高动量旋转射流进行传热和增强混合。
This article presents a novel method of utilizing the thrust generated by synthetic jet actuators to generate torque. Piezoelectric-based synthetic jet actuators were used to create a device with two isolated cavities and orifices. Weight balance and hotwire anemometry were used to quantify the thrust generated by the synthetic jet actuator. Each orifice provides a maximum thrust of 0.15gf, thereby generating a net maximum torque of 17.17gf mm. The torque generated can be used to produce a rotary motion. Such a novel device may be useful where a high-momentum rotary jet may be employed for heat transfer and mixing enhancement.