设计和开发用于识别幼儿残疾风险因素的机器学习和进化计算方法

Dr. I Wayan Suryasa, I. W. A. Werdistira
{"title":"设计和开发用于识别幼儿残疾风险因素的机器学习和进化计算方法","authors":"Dr. I Wayan Suryasa, I. W. A. Werdistira","doi":"10.9756/bijmmi/v14i1/bij24005","DOIUrl":null,"url":null,"abstract":"Timely identification of social and emotional disorders is crucial for the immediate welfare and future well-being of young children. The present study encounters challenges in identifying and establishing risk factors associated with early childhood impairment. Consequently, the overall system performance is substantially reduced. In order to tackle the aforementioned challenges, this study proposes the utilisation of the Cuckoo Search Optimisation with Adaptive Network-based Fuzzy Inference System (CSO+ANFIS) technique. The aim is to effectively generate and identify risk factors associated with early childhood disability. This study employs the CSO method to select the most important attributes and determines the optimal objective function based on the highest fitness values. The ANFIS technique focuses on identifying important risk variables by analysing the hidden layer and fuzzy inference values. The experimental results have shown that the suggested CSO+ANFIS technique surpasses the current paradigm in terms of accuracy and sensitivity metrics.","PeriodicalId":415796,"journal":{"name":"Bonfring International Journal of Man Machine Interface","volume":"26 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of Machine Learning and Evolutionary Computation Methods for Risk Factors Identification in Early Childhood Disability\",\"authors\":\"Dr. I Wayan Suryasa, I. W. A. Werdistira\",\"doi\":\"10.9756/bijmmi/v14i1/bij24005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timely identification of social and emotional disorders is crucial for the immediate welfare and future well-being of young children. The present study encounters challenges in identifying and establishing risk factors associated with early childhood impairment. Consequently, the overall system performance is substantially reduced. In order to tackle the aforementioned challenges, this study proposes the utilisation of the Cuckoo Search Optimisation with Adaptive Network-based Fuzzy Inference System (CSO+ANFIS) technique. The aim is to effectively generate and identify risk factors associated with early childhood disability. This study employs the CSO method to select the most important attributes and determines the optimal objective function based on the highest fitness values. The ANFIS technique focuses on identifying important risk variables by analysing the hidden layer and fuzzy inference values. The experimental results have shown that the suggested CSO+ANFIS technique surpasses the current paradigm in terms of accuracy and sensitivity metrics.\",\"PeriodicalId\":415796,\"journal\":{\"name\":\"Bonfring International Journal of Man Machine Interface\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bonfring International Journal of Man Machine Interface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9756/bijmmi/v14i1/bij24005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bonfring International Journal of Man Machine Interface","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9756/bijmmi/v14i1/bij24005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

及时发现社交和情感障碍对于幼儿的眼前福祉和未来幸福至关重要。本研究在识别和确定与幼儿损伤相关的风险因素方面遇到了挑战。因此,系统的整体性能大大降低。为了应对上述挑战,本研究提出利用布谷鸟搜索优化和自适应网络模糊推理系统(CSO+ANFIS)技术。其目的是有效生成和识别与幼儿残疾相关的风险因素。本研究采用 CSO 方法选择最重要的属性,并根据最高拟合值确定最佳目标函数。ANFIS 技术侧重于通过分析隐藏层和模糊推理值来识别重要的风险变量。实验结果表明,建议的 CSO+ANFIS 技术在准确性和灵敏度指标方面超越了当前的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Development of Machine Learning and Evolutionary Computation Methods for Risk Factors Identification in Early Childhood Disability
Timely identification of social and emotional disorders is crucial for the immediate welfare and future well-being of young children. The present study encounters challenges in identifying and establishing risk factors associated with early childhood impairment. Consequently, the overall system performance is substantially reduced. In order to tackle the aforementioned challenges, this study proposes the utilisation of the Cuckoo Search Optimisation with Adaptive Network-based Fuzzy Inference System (CSO+ANFIS) technique. The aim is to effectively generate and identify risk factors associated with early childhood disability. This study employs the CSO method to select the most important attributes and determines the optimal objective function based on the highest fitness values. The ANFIS technique focuses on identifying important risk variables by analysing the hidden layer and fuzzy inference values. The experimental results have shown that the suggested CSO+ANFIS technique surpasses the current paradigm in terms of accuracy and sensitivity metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信