{"title":"低复杂度 Turbo 解码停止规则:最大对数准则","authors":"Aissa Ouardi","doi":"10.26636/jtit.2024.1.1377","DOIUrl":null,"url":null,"abstract":"This paper presents a new stopping criterion for turbo decoding. It is based on the selection of the maximum log-alphas calculated by the log-MAP algorithm. The sum of these maximum alphas is compared with a threshold value. Then, a decision on the end of decoding is taken. Simulation results show that the max-log criterion offers the same performance as the sum-alpha and sum-log criteria, while maintaining the same complexity level. The max-log criterion uses only the max operator to select maximum alphas and a summation. Therefore, the proposed criterion is faster and offers lower complexity.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Complexity Stopping Rule for Turbo Decoding: the Max-log Criterion\",\"authors\":\"Aissa Ouardi\",\"doi\":\"10.26636/jtit.2024.1.1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new stopping criterion for turbo decoding. It is based on the selection of the maximum log-alphas calculated by the log-MAP algorithm. The sum of these maximum alphas is compared with a threshold value. Then, a decision on the end of decoding is taken. Simulation results show that the max-log criterion offers the same performance as the sum-alpha and sum-log criteria, while maintaining the same complexity level. The max-log criterion uses only the max operator to select maximum alphas and a summation. Therefore, the proposed criterion is faster and offers lower complexity.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.1.1377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Low Complexity Stopping Rule for Turbo Decoding: the Max-log Criterion
This paper presents a new stopping criterion for turbo decoding. It is based on the selection of the maximum log-alphas calculated by the log-MAP algorithm. The sum of these maximum alphas is compared with a threshold value. Then, a decision on the end of decoding is taken. Simulation results show that the max-log criterion offers the same performance as the sum-alpha and sum-log criteria, while maintaining the same complexity level. The max-log criterion uses only the max operator to select maximum alphas and a summation. Therefore, the proposed criterion is faster and offers lower complexity.