微极性电解质溶液中疏水性球形颗粒的电泳分析

M. S. Faltas, H. Sherief, Mohamed Mahmoud Ismail
{"title":"微极性电解质溶液中疏水性球形颗粒的电泳分析","authors":"M. S. Faltas, H. Sherief, Mohamed Mahmoud Ismail","doi":"10.1002/zamm.202300226","DOIUrl":null,"url":null,"abstract":"The general expression for the time‐independent electrophoretic velocity of a spherical colloidal particle with a slippage surface in a microstructure electrolyte solution is derived. The two extreme cases of nonconducting and perfect conducting particles are investigated. The derived expression is valid for arbitrary Debye length and low particle zeta potentials. The concept of velocity spin slip is incorporated with the usual velocity slip at the particle's surface. The effect of the microstructure of fluid particles on the electrophoresis phenomena is discussed based on a micropolar fluid model. The influences of velocity slip and velocity spin slip are shown through various plots of electrophoretic velocity. The limiting case of electrolyte viscous solution is recovered. The principal findings of this research can be summarized as follows: As the micropolarity parameter increases, the normalized electrophoretic velocity decreases and reaches its peak in the case of Newtonian fluids. Additionally, the velocity slip acts as a counteracting factor that promotes an increase in the electrophoretic velocity. In the context of nonconducting particles, the normalized electrophoretic velocity rises as the spin slip parameter and Debye length decrease. Conversely, for perfectly conducting particles, it increases as the spin slip parameter and Debye length increase.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophoresis analysis of a hydrophobic spherical particle in a micropolar electrolyte solution\",\"authors\":\"M. S. Faltas, H. Sherief, Mohamed Mahmoud Ismail\",\"doi\":\"10.1002/zamm.202300226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general expression for the time‐independent electrophoretic velocity of a spherical colloidal particle with a slippage surface in a microstructure electrolyte solution is derived. The two extreme cases of nonconducting and perfect conducting particles are investigated. The derived expression is valid for arbitrary Debye length and low particle zeta potentials. The concept of velocity spin slip is incorporated with the usual velocity slip at the particle's surface. The effect of the microstructure of fluid particles on the electrophoresis phenomena is discussed based on a micropolar fluid model. The influences of velocity slip and velocity spin slip are shown through various plots of electrophoretic velocity. The limiting case of electrolyte viscous solution is recovered. The principal findings of this research can be summarized as follows: As the micropolarity parameter increases, the normalized electrophoretic velocity decreases and reaches its peak in the case of Newtonian fluids. Additionally, the velocity slip acts as a counteracting factor that promotes an increase in the electrophoretic velocity. In the context of nonconducting particles, the normalized electrophoretic velocity rises as the spin slip parameter and Debye length decrease. Conversely, for perfectly conducting particles, it increases as the spin slip parameter and Debye length increase.\",\"PeriodicalId\":509544,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推导了在微结构电解质溶液中具有滑动面的球形胶体粒子的与时间无关的电泳速度的一般表达式。研究了非导电粒子和完全导电粒子这两种极端情况。推导出的表达式适用于任意德拜长度和低粒子zeta电位。速度自旋滑移的概念与粒子表面通常的速度滑移相结合。基于微极性流体模型,讨论了流体颗粒的微观结构对电泳现象的影响。速度滑移和速度自旋滑移的影响通过不同的电泳速度图显示出来。恢复了电解质粘性溶液的极限情况。这项研究的主要发现可归纳如下:随着微泼度参数的增加,归一化电泳速度降低,并在牛顿流体的情况下达到峰值。此外,速度滑移也是促进电泳速度增加的一个抵消因素。在非导电粒子的情况下,归一化电泳速度会随着自旋滑移参数和德拜长度的减小而增加。相反,对于完全导电的粒子,归一化电泳速度会随着自旋滑移参数和德拜长度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrophoresis analysis of a hydrophobic spherical particle in a micropolar electrolyte solution
The general expression for the time‐independent electrophoretic velocity of a spherical colloidal particle with a slippage surface in a microstructure electrolyte solution is derived. The two extreme cases of nonconducting and perfect conducting particles are investigated. The derived expression is valid for arbitrary Debye length and low particle zeta potentials. The concept of velocity spin slip is incorporated with the usual velocity slip at the particle's surface. The effect of the microstructure of fluid particles on the electrophoresis phenomena is discussed based on a micropolar fluid model. The influences of velocity slip and velocity spin slip are shown through various plots of electrophoretic velocity. The limiting case of electrolyte viscous solution is recovered. The principal findings of this research can be summarized as follows: As the micropolarity parameter increases, the normalized electrophoretic velocity decreases and reaches its peak in the case of Newtonian fluids. Additionally, the velocity slip acts as a counteracting factor that promotes an increase in the electrophoretic velocity. In the context of nonconducting particles, the normalized electrophoretic velocity rises as the spin slip parameter and Debye length decrease. Conversely, for perfectly conducting particles, it increases as the spin slip parameter and Debye length increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信