基于变尺度混沌粒子群优化 EKF 的无传感器 PMSM 驱动器速度控制

Qiang Zhao, Zihan Zhao, Zhao Yang, Wei Liu
{"title":"基于变尺度混沌粒子群优化 EKF 的无传感器 PMSM 驱动器速度控制","authors":"Qiang Zhao, Zihan Zhao, Zhao Yang, Wei Liu","doi":"10.1177/00202940231224220","DOIUrl":null,"url":null,"abstract":"To investigate the parameter characteristics of permanent magnet synchronous motor (PMSM) speed sensorless vector control system and capture the noise matrices quickly and accurately in the speed estimation process of the extended Kalman filter for PMSM, The recursive least square method with forgetting factor is proposed to determine the actual parameters of the system, and then a new variable-scale chaotic particle swarm optimization (VCPSO) algorithm is put forward to accurately obtain the system noise matrix and the measurement noise matrix. The simulation results show that noise matrix optimization of extended Kalman filter by employing VCPSO algorithm under actual motor parameters is better than those employing standard PSO or chaotic PSO algorithms with faster speed and higher accuracy.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"41 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed control of sensorless PMSM drive based on EKF optimized by variable scale chaotic particle swarm optimization\",\"authors\":\"Qiang Zhao, Zihan Zhao, Zhao Yang, Wei Liu\",\"doi\":\"10.1177/00202940231224220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the parameter characteristics of permanent magnet synchronous motor (PMSM) speed sensorless vector control system and capture the noise matrices quickly and accurately in the speed estimation process of the extended Kalman filter for PMSM, The recursive least square method with forgetting factor is proposed to determine the actual parameters of the system, and then a new variable-scale chaotic particle swarm optimization (VCPSO) algorithm is put forward to accurately obtain the system noise matrix and the measurement noise matrix. The simulation results show that noise matrix optimization of extended Kalman filter by employing VCPSO algorithm under actual motor parameters is better than those employing standard PSO or chaotic PSO algorithms with faster speed and higher accuracy.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"41 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231224220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231224220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究永磁同步电机(PMSM)无速度传感器矢量控制系统的参数特性,并在 PMSM 的扩展卡尔曼滤波器速度估计过程中快速、准确地捕获噪声矩阵,提出了带遗忘因子的递归最小二乘法来确定系统的实际参数,然后提出了一种新的变尺度混沌粒子群优化(VCPSO)算法来准确地获得系统噪声矩阵和测量噪声矩阵。仿真结果表明,在实际电机参数条件下,采用 VCPSO 算法对扩展卡尔曼滤波器进行噪声矩阵优化的效果优于采用标准 PSO 或混沌 PSO 算法,且速度更快、精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed control of sensorless PMSM drive based on EKF optimized by variable scale chaotic particle swarm optimization
To investigate the parameter characteristics of permanent magnet synchronous motor (PMSM) speed sensorless vector control system and capture the noise matrices quickly and accurately in the speed estimation process of the extended Kalman filter for PMSM, The recursive least square method with forgetting factor is proposed to determine the actual parameters of the system, and then a new variable-scale chaotic particle swarm optimization (VCPSO) algorithm is put forward to accurately obtain the system noise matrix and the measurement noise matrix. The simulation results show that noise matrix optimization of extended Kalman filter by employing VCPSO algorithm under actual motor parameters is better than those employing standard PSO or chaotic PSO algorithms with faster speed and higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信