在富含有机物质土壤的森林中,管理引起的地形凹陷增加了汞甲基化风险

Ivars Kļaviņš, A. Bārdule, Zane Kļaviņa, Z. Lībiete
{"title":"在富含有机物质土壤的森林中,管理引起的地形凹陷增加了汞甲基化风险","authors":"Ivars Kļaviņš, A. Bārdule, Zane Kļaviņa, Z. Lībiete","doi":"10.3390/hydrology11020026","DOIUrl":null,"url":null,"abstract":"Mercury (Hg) is a toxic contaminant that bioaccumulates in trophic chains in its organic form—methylmercury (MeHg). Hg methylation is driven by microorganisms in favourable conditions, stagnant water pools being among potential methylation hotspots. In the present study, we estimated the total Hg and MeHg concentrations in the sediments of water-filled management-induced terrain depressions (ruts, mounding pits and a partly functional drainage ditch) and in nearby undisturbed soil in six hemiboreal forest sites with organic-matter-rich soils in Latvia. Environmental samples were taken in the spring, summer and autumn of 2022. Furthermore, we evaluated the risks of element leaching from the depressions using high-resolution digital terrain models (DTM) and meteorological data. The results suggested a possible leaching of Hg in the past as THg concentrations in the sediments of the depressions were significantly lower than in the surrounding soil. Furthermore, significantly higher MeHg and %MeHg concentrations were found in the sediments than in the surrounding soil identifying the management-induced depressions as Hg methylation hotspots. Spatial analysis of the DTMs pointed to a very likely periodical leaching of elements from the depressions during high precipitation episodes as well as during snowmelts. Moreover, it was observed that ruts left by heavy machinery often channel surface runoff.","PeriodicalId":508746,"journal":{"name":"Hydrology","volume":"33 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased Hg Methylation Risks in Management-Induced Terrain Depressions in Forests with Organic-Matter-Rich Soils\",\"authors\":\"Ivars Kļaviņš, A. Bārdule, Zane Kļaviņa, Z. Lībiete\",\"doi\":\"10.3390/hydrology11020026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mercury (Hg) is a toxic contaminant that bioaccumulates in trophic chains in its organic form—methylmercury (MeHg). Hg methylation is driven by microorganisms in favourable conditions, stagnant water pools being among potential methylation hotspots. In the present study, we estimated the total Hg and MeHg concentrations in the sediments of water-filled management-induced terrain depressions (ruts, mounding pits and a partly functional drainage ditch) and in nearby undisturbed soil in six hemiboreal forest sites with organic-matter-rich soils in Latvia. Environmental samples were taken in the spring, summer and autumn of 2022. Furthermore, we evaluated the risks of element leaching from the depressions using high-resolution digital terrain models (DTM) and meteorological data. The results suggested a possible leaching of Hg in the past as THg concentrations in the sediments of the depressions were significantly lower than in the surrounding soil. Furthermore, significantly higher MeHg and %MeHg concentrations were found in the sediments than in the surrounding soil identifying the management-induced depressions as Hg methylation hotspots. Spatial analysis of the DTMs pointed to a very likely periodical leaching of elements from the depressions during high precipitation episodes as well as during snowmelts. Moreover, it was observed that ruts left by heavy machinery often channel surface runoff.\",\"PeriodicalId\":508746,\"journal\":{\"name\":\"Hydrology\",\"volume\":\"33 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology11020026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汞(Hg)是一种有毒污染物,会以有机形式--甲基汞(MeHg)在营养链中进行生物累积。汞的甲基化是由微生物在有利条件下驱动的,死水池是潜在的甲基化热点。在本研究中,我们估算了拉脱维亚六个富含有机物质土壤的半山森林地点中,由管理引起的地形洼地(车辙、土墩坑和部分功能的排水沟)中的沉积物以及附近未受扰动土壤中的总汞和甲基汞浓度。环境样本于 2022 年春、夏、秋三季采集。此外,我们还利用高分辨率数字地形模型 (DTM) 和气象数据评估了洼地元素沥滤的风险。结果表明,过去可能存在汞沥滤现象,因为洼地沉积物中的三卤甲烷浓度明显低于周围土壤中的浓度。此外,沉积物中的甲基汞(MeHg)和甲基汞(MeHg)浓度明显高于周围土壤中的浓度,这表明管理引起的洼地是汞甲基化的热点地区。对 DTM 的空间分析表明,在降水量大和融雪期间,洼地中的元素很可能会周期性沥滤。此外,还观察到重型机械留下的车辙经常会引导地表径流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased Hg Methylation Risks in Management-Induced Terrain Depressions in Forests with Organic-Matter-Rich Soils
Mercury (Hg) is a toxic contaminant that bioaccumulates in trophic chains in its organic form—methylmercury (MeHg). Hg methylation is driven by microorganisms in favourable conditions, stagnant water pools being among potential methylation hotspots. In the present study, we estimated the total Hg and MeHg concentrations in the sediments of water-filled management-induced terrain depressions (ruts, mounding pits and a partly functional drainage ditch) and in nearby undisturbed soil in six hemiboreal forest sites with organic-matter-rich soils in Latvia. Environmental samples were taken in the spring, summer and autumn of 2022. Furthermore, we evaluated the risks of element leaching from the depressions using high-resolution digital terrain models (DTM) and meteorological data. The results suggested a possible leaching of Hg in the past as THg concentrations in the sediments of the depressions were significantly lower than in the surrounding soil. Furthermore, significantly higher MeHg and %MeHg concentrations were found in the sediments than in the surrounding soil identifying the management-induced depressions as Hg methylation hotspots. Spatial analysis of the DTMs pointed to a very likely periodical leaching of elements from the depressions during high precipitation episodes as well as during snowmelts. Moreover, it was observed that ruts left by heavy machinery often channel surface runoff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信