利用偏好激发和乔奎特积分进行个性化捆绑推荐

Erich Robbi, Marco Bronzini, P. Viappiani, Andrea Passerini
{"title":"利用偏好激发和乔奎特积分进行个性化捆绑推荐","authors":"Erich Robbi, Marco Bronzini, P. Viappiani, Andrea Passerini","doi":"10.3389/frai.2024.1346684","DOIUrl":null,"url":null,"abstract":"Bundle recommendation aims to generate bundles of associated products that users tend to consume as a whole under certain circumstances. Modeling the bundle utility for users is a non-trivial task, as it requires to account for the potential interdependencies between bundle attributes. To address this challenge, we introduce a new preference-based approach for bundle recommendation exploiting the Choquet integral. This allows us to formalize preferences for coalitions of environmental-related attributes, thus recommending product bundles accounting for synergies among product attributes. An experimental evaluation of a dataset of local food products in Northern Italy shows how the Choquet integral allows the natural formalization of a sensible notion of environmental friendliness and that standard approaches based on weighted sums of attributes end up recommending bundles with lower environmental friendliness even if weights are explicitly learned to maximize it. We further show how preference elicitation strategies can be leveraged to acquire weights of the Choquet integral from user feedback in terms of preferences over candidate bundles, and show how a handful of queries allow to recommend optimal bundles for a diverse set of user prototypes.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"46 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized bundle recommendation using preference elicitation and the Choquet integral\",\"authors\":\"Erich Robbi, Marco Bronzini, P. Viappiani, Andrea Passerini\",\"doi\":\"10.3389/frai.2024.1346684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bundle recommendation aims to generate bundles of associated products that users tend to consume as a whole under certain circumstances. Modeling the bundle utility for users is a non-trivial task, as it requires to account for the potential interdependencies between bundle attributes. To address this challenge, we introduce a new preference-based approach for bundle recommendation exploiting the Choquet integral. This allows us to formalize preferences for coalitions of environmental-related attributes, thus recommending product bundles accounting for synergies among product attributes. An experimental evaluation of a dataset of local food products in Northern Italy shows how the Choquet integral allows the natural formalization of a sensible notion of environmental friendliness and that standard approaches based on weighted sums of attributes end up recommending bundles with lower environmental friendliness even if weights are explicitly learned to maximize it. We further show how preference elicitation strategies can be leveraged to acquire weights of the Choquet integral from user feedback in terms of preferences over candidate bundles, and show how a handful of queries allow to recommend optimal bundles for a diverse set of user prototypes.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"46 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1346684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1346684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

捆绑推荐旨在生成用户在特定情况下倾向于整体消费的相关产品捆绑。为用户建立捆绑效用模型并非易事,因为它需要考虑捆绑属性之间潜在的相互依赖关系。为了应对这一挑战,我们引入了一种新的基于偏好的方法,利用 Choquet 积分进行捆绑推荐。这使我们能够正式确定环境相关属性联盟的偏好,从而推荐考虑到产品属性之间协同作用的捆绑产品。对意大利北部当地食品数据集的实验评估表明,Choquet 积分可以自然地形式化环境友好性的合理概念,而基于属性加权和的标准方法最终会推荐环境友好性较低的捆绑产品,即使明确学习了权重以最大化环境友好性。我们进一步展示了如何利用偏好激发策略,从用户反馈中获取对候选捆绑包的偏好方面的乔克特积分权重,并展示了如何通过少量查询为各种用户原型推荐最佳捆绑包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized bundle recommendation using preference elicitation and the Choquet integral
Bundle recommendation aims to generate bundles of associated products that users tend to consume as a whole under certain circumstances. Modeling the bundle utility for users is a non-trivial task, as it requires to account for the potential interdependencies between bundle attributes. To address this challenge, we introduce a new preference-based approach for bundle recommendation exploiting the Choquet integral. This allows us to formalize preferences for coalitions of environmental-related attributes, thus recommending product bundles accounting for synergies among product attributes. An experimental evaluation of a dataset of local food products in Northern Italy shows how the Choquet integral allows the natural formalization of a sensible notion of environmental friendliness and that standard approaches based on weighted sums of attributes end up recommending bundles with lower environmental friendliness even if weights are explicitly learned to maximize it. We further show how preference elicitation strategies can be leveraged to acquire weights of the Choquet integral from user feedback in terms of preferences over candidate bundles, and show how a handful of queries allow to recommend optimal bundles for a diverse set of user prototypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信