伪抛物方程的分形修正及其广义分形变分原理

Fractals Pub Date : 2024-02-14 DOI:10.1142/s0218348x24500373
Kang-Jia Wang, Shuai Li, Peng Xu, Feng Shi
{"title":"伪抛物方程的分形修正及其广义分形变分原理","authors":"Kang-Jia Wang, Shuai Li, Peng Xu, Feng Shi","doi":"10.1142/s0218348x24500373","DOIUrl":null,"url":null,"abstract":"In this work, a new fractal pseudo-parabolic equation is derived by means of He’s fractal derivative. The semi-inverse method (SIM) is employed to develop the generalized fractal variational principle (GFVP), which can reveal the energy conservation law in the fractal space and provide some new insights on the study of the variational method.","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"54 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FRACTAL MODIFICATION OF THE PSEUDO-PARABOLIC EQUATION AND ITS GENERALIZED FRACTAL VARIATIONAL PRINCIPLE\",\"authors\":\"Kang-Jia Wang, Shuai Li, Peng Xu, Feng Shi\",\"doi\":\"10.1142/s0218348x24500373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new fractal pseudo-parabolic equation is derived by means of He’s fractal derivative. The semi-inverse method (SIM) is employed to develop the generalized fractal variational principle (GFVP), which can reveal the energy conservation law in the fractal space and provide some new insights on the study of the variational method.\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"54 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,通过 He 的分形导数导出了一个新的分形伪抛物方程。利用半逆方法(SIM)发展了广义分形变分原理(GFVP),从而揭示了分形空间的能量守恒定律,并为变分法的研究提供了一些新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A FRACTAL MODIFICATION OF THE PSEUDO-PARABOLIC EQUATION AND ITS GENERALIZED FRACTAL VARIATIONAL PRINCIPLE
In this work, a new fractal pseudo-parabolic equation is derived by means of He’s fractal derivative. The semi-inverse method (SIM) is employed to develop the generalized fractal variational principle (GFVP), which can reveal the energy conservation law in the fractal space and provide some new insights on the study of the variational method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信