使用 "只看一次 "算法检测 Sunda 脚本

Daffa Arifadilah, Asriyanik, Agung Pambudi
{"title":"使用 \"只看一次 \"算法检测 Sunda 脚本","authors":"Daffa Arifadilah, Asriyanik, Agung Pambudi","doi":"10.59934/jaiea.v3i2.443","DOIUrl":null,"url":null,"abstract":"The Sundanese script is a writing system used in the Sundanese language, one of the regional languages of West Java, Indonesia. This study investigates the use of the YOLO v8 algorithm for the real-time video detection of Sundanese script. Various versions of YOLO v8, including YOLO v8n, v8s, v8m, v8l, and v8x, were tested to determine the most effective model. After a comprehensive evaluation involving the analysis of mean Average Precision (mAP), F1-Confidence, and precision, the study selected the YOLO v8s model as the primary detection method. YOLO v8s demonstrated superior performance with the highest mAP of 98.835%, an F1-Confidence of  98%, and a precision of 76,2%. This choice was based on a balance between high accuracy and computational efficiency. The results indicate significant potential for object recognition technology in the learning and preservation of Sundanese script.","PeriodicalId":320979,"journal":{"name":"Journal of Artificial Intelligence and Engineering Applications (JAIEA)","volume":"110 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sunda Script Detection Using You Only Look Once Algorithm\",\"authors\":\"Daffa Arifadilah, Asriyanik, Agung Pambudi\",\"doi\":\"10.59934/jaiea.v3i2.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sundanese script is a writing system used in the Sundanese language, one of the regional languages of West Java, Indonesia. This study investigates the use of the YOLO v8 algorithm for the real-time video detection of Sundanese script. Various versions of YOLO v8, including YOLO v8n, v8s, v8m, v8l, and v8x, were tested to determine the most effective model. After a comprehensive evaluation involving the analysis of mean Average Precision (mAP), F1-Confidence, and precision, the study selected the YOLO v8s model as the primary detection method. YOLO v8s demonstrated superior performance with the highest mAP of 98.835%, an F1-Confidence of  98%, and a precision of 76,2%. This choice was based on a balance between high accuracy and computational efficiency. The results indicate significant potential for object recognition technology in the learning and preservation of Sundanese script.\",\"PeriodicalId\":320979,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Engineering Applications (JAIEA)\",\"volume\":\"110 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Engineering Applications (JAIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59934/jaiea.v3i2.443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Engineering Applications (JAIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59934/jaiea.v3i2.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巽他文是印度尼西亚西爪哇地区语言之一巽他语中使用的一种书写系统。本研究探讨了如何使用 YOLO v8 算法对巽他语文字进行实时视频检测。对 YOLO v8 的各种版本(包括 YOLO v8n、v8s、v8m、v8l 和 v8x)进行了测试,以确定最有效的模型。经过对平均精确度 (mAP)、F1-置信度和精确度进行分析的综合评估,该研究选择 YOLO v8s 模型作为主要检测方法。YOLO v8s 表现出了卓越的性能,其最高平均精确度为 98.835%,F1 置信度为 98%,精确度为 76.2%。这一选择是基于高精度和计算效率之间的平衡。结果表明,物体识别技术在学习和保存巽他文方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sunda Script Detection Using You Only Look Once Algorithm
The Sundanese script is a writing system used in the Sundanese language, one of the regional languages of West Java, Indonesia. This study investigates the use of the YOLO v8 algorithm for the real-time video detection of Sundanese script. Various versions of YOLO v8, including YOLO v8n, v8s, v8m, v8l, and v8x, were tested to determine the most effective model. After a comprehensive evaluation involving the analysis of mean Average Precision (mAP), F1-Confidence, and precision, the study selected the YOLO v8s model as the primary detection method. YOLO v8s demonstrated superior performance with the highest mAP of 98.835%, an F1-Confidence of  98%, and a precision of 76,2%. This choice was based on a balance between high accuracy and computational efficiency. The results indicate significant potential for object recognition technology in the learning and preservation of Sundanese script.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信