{"title":"基于基因型的 2 型糖尿病预测和临床管理精准营养策略","authors":"Omar Ramos-Lopez","doi":"10.4239/wjd.v15.i2.142","DOIUrl":null,"url":null,"abstract":"Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.","PeriodicalId":509005,"journal":{"name":"World Journal of Diabetes","volume":"114 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus\",\"authors\":\"Omar Ramos-Lopez\",\"doi\":\"10.4239/wjd.v15.i2.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.\",\"PeriodicalId\":509005,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v15.i2.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4239/wjd.v15.i2.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes mellitus
Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders. T2DM physiopathology is influenced by complex interrelationships between genetic, metabolic and lifestyle factors (including diet), which differ between populations and geographic regions. In fact, excessive consumptions of high fat/high sugar foods generally increase the risk of developing T2DM, whereas habitual intakes of plant-based healthy diets usually exert a protective effect. Moreover, genomic studies have allowed the characterization of sequence DNA variants across the human genome, some of which may affect gene expression and protein functions relevant for glucose homeostasis. This comprehensive literature review covers the impact of gene-diet interactions on T2DM susceptibility and disease progression, some of which have demonstrated a value as biomarkers of personal responses to certain nutritional interventions. Also, novel genotype-based dietary strategies have been developed for improving T2DM control in comparison to general lifestyle recommendations. Furthermore, progresses in other omics areas (epigenomics, metagenomics, proteomics, and metabolomics) are improving current understanding of genetic insights in T2DM clinical outcomes. Although more investigation is still needed, the analysis of the genetic make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to personalize the screening, prevention, diagnosis, management, and prognosis of T2DM through precision nutrition.