Radha Krishna Jana, Dharmpal Singh, Saikat Maity, Hrithik Paul
{"title":"分析 Covid-19 微博公众情绪的混合方法","authors":"Radha Krishna Jana, Dharmpal Singh, Saikat Maity, Hrithik Paul","doi":"10.17485/ijst/v17i7.3017","DOIUrl":null,"url":null,"abstract":"Objectives: The objective of this study is to introduce a hybrid model for analyzing the people sentiment on covid-19 tweets. Methods: We used a total no. of 27,500 datasets, 70% of the data sets for training and reserved the other 30% for testing. Due to this separation 19,250 samples are used for training, the remaining 8,250 were used to evaluate the accuracy of the test. This paper proposes a technique for sentiment analysis that integrates deep learning, genetic algorithms (GA), and social media sentiment. For more accuracy and performance, we here suggested a hybrid genetic algorithm-based model. A hybrid model is created by assembling the LSTM model and providing it to the genetic algorithm architecture. Findings: LSTM with a genetic model better than LSTM without genetic model. The accuracy of our suggested model is 96.40%. Novelty : The accuracy of the LSTM model for sentiment analysis is 91%. The accuracy of the proposed model is 96.40%. The proposed model is more accurate for sentiment prediction. Keywords: Social network perception, Crossover, Mutation, LSTM, NLP, GA","PeriodicalId":508200,"journal":{"name":"Indian Journal Of Science And Technology","volume":"12 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Approach to Analyse the Public Sentiment on Covid-19 Tweets\",\"authors\":\"Radha Krishna Jana, Dharmpal Singh, Saikat Maity, Hrithik Paul\",\"doi\":\"10.17485/ijst/v17i7.3017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: The objective of this study is to introduce a hybrid model for analyzing the people sentiment on covid-19 tweets. Methods: We used a total no. of 27,500 datasets, 70% of the data sets for training and reserved the other 30% for testing. Due to this separation 19,250 samples are used for training, the remaining 8,250 were used to evaluate the accuracy of the test. This paper proposes a technique for sentiment analysis that integrates deep learning, genetic algorithms (GA), and social media sentiment. For more accuracy and performance, we here suggested a hybrid genetic algorithm-based model. A hybrid model is created by assembling the LSTM model and providing it to the genetic algorithm architecture. Findings: LSTM with a genetic model better than LSTM without genetic model. The accuracy of our suggested model is 96.40%. Novelty : The accuracy of the LSTM model for sentiment analysis is 91%. The accuracy of the proposed model is 96.40%. The proposed model is more accurate for sentiment prediction. Keywords: Social network perception, Crossover, Mutation, LSTM, NLP, GA\",\"PeriodicalId\":508200,\"journal\":{\"name\":\"Indian Journal Of Science And Technology\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal Of Science And Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i7.3017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal Of Science And Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i7.3017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Approach to Analyse the Public Sentiment on Covid-19 Tweets
Objectives: The objective of this study is to introduce a hybrid model for analyzing the people sentiment on covid-19 tweets. Methods: We used a total no. of 27,500 datasets, 70% of the data sets for training and reserved the other 30% for testing. Due to this separation 19,250 samples are used for training, the remaining 8,250 were used to evaluate the accuracy of the test. This paper proposes a technique for sentiment analysis that integrates deep learning, genetic algorithms (GA), and social media sentiment. For more accuracy and performance, we here suggested a hybrid genetic algorithm-based model. A hybrid model is created by assembling the LSTM model and providing it to the genetic algorithm architecture. Findings: LSTM with a genetic model better than LSTM without genetic model. The accuracy of our suggested model is 96.40%. Novelty : The accuracy of the LSTM model for sentiment analysis is 91%. The accuracy of the proposed model is 96.40%. The proposed model is more accurate for sentiment prediction. Keywords: Social network perception, Crossover, Mutation, LSTM, NLP, GA