通过计算推断迷走神经介导的趋化因子在调节组织内和组织间炎症中的作用

Ashti M. Shah, R. Zamora, Derek A. Barclay, Jinling Yin, Fayten el-Dehaibi, M. Addorisio, T. Tsaava, A. Tynan, Kevin Tracey, Sangeeta Chavan, Y. Vodovotz
{"title":"通过计算推断迷走神经介导的趋化因子在调节组织内和组织间炎症中的作用","authors":"Ashti M. Shah, R. Zamora, Derek A. Barclay, Jinling Yin, Fayten el-Dehaibi, M. Addorisio, T. Tsaava, A. Tynan, Kevin Tracey, Sangeeta Chavan, Y. Vodovotz","doi":"10.3389/fsysb.2024.1266279","DOIUrl":null,"url":null,"abstract":"Introduction: The vagus nerve innervates multiple organs, but its role in regulating cross-tissue spread of inflammation is as yet unclear. We hypothesized that the vagus nerve may regulate cross-tissue inflammation via modulation of the putatively neurally regulated chemokine IP-10/CXCL10.Methods: Rate-of-change analysis, dynamic network analysis, and dynamic hypergraphs were used to model intra- and inter-tissue trends, respectively, in inflammatory mediators from mice that underwent either vagotomy or sham surgery.Results: This analysis suggested that vagotomy primarily disrupts the cross-tissue attenuation of inflammatory networks involving IP-10 as well as the chemokines MIG/CXCL9 and CCL2/MCP-1 along with the cytokines IFN-γ and IL-6. Computational analysis also suggested that the vagus-dependent rate of expression of IP-10 and MIG/CXCL9 in the spleen impacts the trajectory of chemokine expression in other tissues. Perturbation of this complex system with bacterial lipopolysaccharide (LPS) revealed a vagally regulated role for MIG in the heart. Further, LPS-stimulated expression of IP-10 was inferred to be vagus-independent across all tissues examined while reducing connectivity to IL-6 and MCP-1, a hypothesis supported by Boolean network modeling.Discussion: Together, these studies define novel spatiotemporal dimensions of vagus-regulated acute inflammation.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"17 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational inference of chemokine-mediated roles for the vagus nerve in modulating intra- and inter-tissue inflammation\",\"authors\":\"Ashti M. Shah, R. Zamora, Derek A. Barclay, Jinling Yin, Fayten el-Dehaibi, M. Addorisio, T. Tsaava, A. Tynan, Kevin Tracey, Sangeeta Chavan, Y. Vodovotz\",\"doi\":\"10.3389/fsysb.2024.1266279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The vagus nerve innervates multiple organs, but its role in regulating cross-tissue spread of inflammation is as yet unclear. We hypothesized that the vagus nerve may regulate cross-tissue inflammation via modulation of the putatively neurally regulated chemokine IP-10/CXCL10.Methods: Rate-of-change analysis, dynamic network analysis, and dynamic hypergraphs were used to model intra- and inter-tissue trends, respectively, in inflammatory mediators from mice that underwent either vagotomy or sham surgery.Results: This analysis suggested that vagotomy primarily disrupts the cross-tissue attenuation of inflammatory networks involving IP-10 as well as the chemokines MIG/CXCL9 and CCL2/MCP-1 along with the cytokines IFN-γ and IL-6. Computational analysis also suggested that the vagus-dependent rate of expression of IP-10 and MIG/CXCL9 in the spleen impacts the trajectory of chemokine expression in other tissues. Perturbation of this complex system with bacterial lipopolysaccharide (LPS) revealed a vagally regulated role for MIG in the heart. Further, LPS-stimulated expression of IP-10 was inferred to be vagus-independent across all tissues examined while reducing connectivity to IL-6 and MCP-1, a hypothesis supported by Boolean network modeling.Discussion: Together, these studies define novel spatiotemporal dimensions of vagus-regulated acute inflammation.\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2024.1266279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1266279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引言迷走神经支配多个器官,但它在调节炎症跨组织扩散方面的作用尚不清楚。我们假设迷走神经可能通过调节可能受神经调节的趋化因子 IP-10/CXCL10 来调节跨组织炎症:方法:使用变化率分析、动态网络分析和动态超图分别模拟小鼠接受迷走神经切断术或假手术后组织内和组织间炎症介质的变化趋势:结果:分析表明,迷走神经切断术主要破坏了涉及 IP-10、趋化因子 MIG/CXCL9 和 CCL2/MCP-1 以及细胞因子 IFN-γ 和 IL-6 的炎症网络的跨组织衰减。计算分析还表明,脾脏中依赖迷走神经的 IP-10 和 MIG/CXCL9 的表达率会影响其他组织中趋化因子的表达轨迹。细菌脂多糖(LPS)对这一复杂系统的干扰揭示了 MIG 在心脏中受迷走神经调控的作用。此外,据推断,LPS 刺激的 IP-10 在所有受检组织中的表达都与迷走神经无关,同时减少了与 IL-6 和 MCP-1 的连接,布尔网络建模支持了这一假设:这些研究共同定义了迷走神经调控急性炎症的新时空维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational inference of chemokine-mediated roles for the vagus nerve in modulating intra- and inter-tissue inflammation
Introduction: The vagus nerve innervates multiple organs, but its role in regulating cross-tissue spread of inflammation is as yet unclear. We hypothesized that the vagus nerve may regulate cross-tissue inflammation via modulation of the putatively neurally regulated chemokine IP-10/CXCL10.Methods: Rate-of-change analysis, dynamic network analysis, and dynamic hypergraphs were used to model intra- and inter-tissue trends, respectively, in inflammatory mediators from mice that underwent either vagotomy or sham surgery.Results: This analysis suggested that vagotomy primarily disrupts the cross-tissue attenuation of inflammatory networks involving IP-10 as well as the chemokines MIG/CXCL9 and CCL2/MCP-1 along with the cytokines IFN-γ and IL-6. Computational analysis also suggested that the vagus-dependent rate of expression of IP-10 and MIG/CXCL9 in the spleen impacts the trajectory of chemokine expression in other tissues. Perturbation of this complex system with bacterial lipopolysaccharide (LPS) revealed a vagally regulated role for MIG in the heart. Further, LPS-stimulated expression of IP-10 was inferred to be vagus-independent across all tissues examined while reducing connectivity to IL-6 and MCP-1, a hypothesis supported by Boolean network modeling.Discussion: Together, these studies define novel spatiotemporal dimensions of vagus-regulated acute inflammation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信