用于氧还原反应和锌-空气电池的具有密边结构的 N、S 掺杂多孔碳

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhen Yuan, Meiling Fan*, YaDong Wang, Yapeng Cheng* and Haining Zhang, 
{"title":"用于氧还原反应和锌-空气电池的具有密边结构的 N、S 掺杂多孔碳","authors":"Zhen Yuan,&nbsp;Meiling Fan*,&nbsp;YaDong Wang,&nbsp;Yapeng Cheng* and Haining Zhang,&nbsp;","doi":"10.1021/acsaem.3c03023","DOIUrl":null,"url":null,"abstract":"<p >The sp<sup>2</sup>-hybridized electronic structure of pristine carbon results in poor kinetic processes in the oxygen reduction reaction (ORR) with a high energy barrier for the proton-coupled electron transfer process. Thus, designing numerous accessible defects by breaking the symmetric structure of carbon materials is conducive to reduce the energy barrier of the ORR. Meanwhile, the heteroatom doping strategy can also modify the electronic properties of neighboring carbon atoms to effectively activate the sp<sup>2</sup>-hybridized electronic structure of carbon nanomaterials. In this work, a defective carbon nanomaterial with densely accessible S, N-codoped edge structures is synthesized via the sacrificial template method. The as-prepared catalyst (S–N–C-3) shows a high external surface area of 518.5 m<sup>2</sup>g<sup>–1</sup> with an abundant edge structure. Meanwhile, the metal-free S–N–C-3 material shows an excellent half-wave potential (0.867 V) in alkaline solution. In addition, the discharge voltage of the assembled zinc–air battery from S–N–C-3 remains 1.24 V after 270 h of continuous operation, suggesting its superior durability. The excellent catalytic properties originate from the densely accessible N, S-codoped edge structure. The work would provide ideas for the design and synthesis of metal-free carbon-based electrocatalysts and the mechanism analysis of ORR.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 4","pages":"1598–1605"},"PeriodicalIF":5.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N, S-Codoped Porous Carbon with Densely Edge Structure for Oxygen Reduction Reaction and Zinc-Air Battery\",\"authors\":\"Zhen Yuan,&nbsp;Meiling Fan*,&nbsp;YaDong Wang,&nbsp;Yapeng Cheng* and Haining Zhang,&nbsp;\",\"doi\":\"10.1021/acsaem.3c03023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sp<sup>2</sup>-hybridized electronic structure of pristine carbon results in poor kinetic processes in the oxygen reduction reaction (ORR) with a high energy barrier for the proton-coupled electron transfer process. Thus, designing numerous accessible defects by breaking the symmetric structure of carbon materials is conducive to reduce the energy barrier of the ORR. Meanwhile, the heteroatom doping strategy can also modify the electronic properties of neighboring carbon atoms to effectively activate the sp<sup>2</sup>-hybridized electronic structure of carbon nanomaterials. In this work, a defective carbon nanomaterial with densely accessible S, N-codoped edge structures is synthesized via the sacrificial template method. The as-prepared catalyst (S–N–C-3) shows a high external surface area of 518.5 m<sup>2</sup>g<sup>–1</sup> with an abundant edge structure. Meanwhile, the metal-free S–N–C-3 material shows an excellent half-wave potential (0.867 V) in alkaline solution. In addition, the discharge voltage of the assembled zinc–air battery from S–N–C-3 remains 1.24 V after 270 h of continuous operation, suggesting its superior durability. The excellent catalytic properties originate from the densely accessible N, S-codoped edge structure. The work would provide ideas for the design and synthesis of metal-free carbon-based electrocatalysts and the mechanism analysis of ORR.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 4\",\"pages\":\"1598–1605\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.3c03023\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.3c03023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

原始碳的sp2-杂化电子结构导致氧还原反应(ORR)的动力学过程较差,质子耦合电子转移过程的能量势垒较高。因此,通过打破碳材料的对称结构设计大量可触及缺陷有利于降低 ORR 的能垒。同时,杂原子掺杂策略还可以改变相邻碳原子的电子特性,从而有效激活碳纳米材料的sp2杂化电子结构。本研究通过牺牲模板法合成了一种具有密集可及 S、N掺杂边缘结构的缺陷碳纳米材料。制备的催化剂(S-N-C-3)具有 518.5 m2g-1 的高外表面积和丰富的边缘结构。同时,无金属 S-N-C-3 材料在碱性溶液中显示出优异的半波电位(0.867 V)。此外,S-N-C-3 组装的锌-空气电池在连续工作 270 小时后,放电电压仍保持在 1.24 V,表明其具有卓越的耐用性。优异的催化性能源于密集可及的 N、S-掺杂边缘结构。这项工作将为无金属碳基电催化剂的设计和合成以及 ORR 的机理分析提供思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

N, S-Codoped Porous Carbon with Densely Edge Structure for Oxygen Reduction Reaction and Zinc-Air Battery

N, S-Codoped Porous Carbon with Densely Edge Structure for Oxygen Reduction Reaction and Zinc-Air Battery

N, S-Codoped Porous Carbon with Densely Edge Structure for Oxygen Reduction Reaction and Zinc-Air Battery

The sp2-hybridized electronic structure of pristine carbon results in poor kinetic processes in the oxygen reduction reaction (ORR) with a high energy barrier for the proton-coupled electron transfer process. Thus, designing numerous accessible defects by breaking the symmetric structure of carbon materials is conducive to reduce the energy barrier of the ORR. Meanwhile, the heteroatom doping strategy can also modify the electronic properties of neighboring carbon atoms to effectively activate the sp2-hybridized electronic structure of carbon nanomaterials. In this work, a defective carbon nanomaterial with densely accessible S, N-codoped edge structures is synthesized via the sacrificial template method. The as-prepared catalyst (S–N–C-3) shows a high external surface area of 518.5 m2g–1 with an abundant edge structure. Meanwhile, the metal-free S–N–C-3 material shows an excellent half-wave potential (0.867 V) in alkaline solution. In addition, the discharge voltage of the assembled zinc–air battery from S–N–C-3 remains 1.24 V after 270 h of continuous operation, suggesting its superior durability. The excellent catalytic properties originate from the densely accessible N, S-codoped edge structure. The work would provide ideas for the design and synthesis of metal-free carbon-based electrocatalysts and the mechanism analysis of ORR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信