基于微纳米材料的衍射光学器件的近红外光谱特性

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhao Jin, Qiyao Xiao, Yue ZHANG, Cheng-Yuan Sun, Yongbo Deng, Chengmiao WANG, Qiang Fu, Yingchao Li, Huilin Jiang
{"title":"基于微纳米材料的衍射光学器件的近红外光谱特性","authors":"Zhao Jin, Qiyao Xiao, Yue ZHANG, Cheng-Yuan Sun, Yongbo Deng, Chengmiao WANG, Qiang Fu, Yingchao Li, Huilin Jiang","doi":"10.5755/j02.ms.35151","DOIUrl":null,"url":null,"abstract":"Diffractive optics devices are optical devices in which the amplitude or phase of the incident light is spatially modulated periodically by a micro-nanomaterial based structure. The study of diffractive optics devices in the field of micro and nano can change the spectroscopic behavior of micro and nano diffractive optics devices by varying the microstructure of the structure and the optical wave properties, which can effectively and reasonably modulate the optical wave signal. To study the effect of different parameter structures on the performance of micro-nano diffraction optical devices, in this paper, two three-dimensional array structures of diffractive optical devices are proposed, which are a vertex-intersecting regular tetrahedron structure and a base-intersecting regular frustum structure. Using the Finite-Difference Time-Domain method, the spectroscopic images of the diffractive optics of the constructed micro-nano diffractive devices are studied in the near-infrared band by varying the height of the constructed structures, the type of structures, the wavelength of the incident light waves, and the polarization direction of the light waves in different 3D height coordinates. The effects of different parameter changes on the performance of the micro-nano diffractive optics devices were analyzed by image comparison. The results show that the best diffraction effect is achieved at a structure height of 0.9 μm for both models with different structure types. The study of both structures at this structure height reveals that the location of diffraction occurrence and the intensity of diffraction can be tuned by varying the structure and the relevant parameters such as the polarization of the light wave. This paper has some theoretical applications for the study of high-performance diffractive optics.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared Spectrum Characteristics of Micro-Nano Material Based Diffraction Optical Devices\",\"authors\":\"Zhao Jin, Qiyao Xiao, Yue ZHANG, Cheng-Yuan Sun, Yongbo Deng, Chengmiao WANG, Qiang Fu, Yingchao Li, Huilin Jiang\",\"doi\":\"10.5755/j02.ms.35151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffractive optics devices are optical devices in which the amplitude or phase of the incident light is spatially modulated periodically by a micro-nanomaterial based structure. The study of diffractive optics devices in the field of micro and nano can change the spectroscopic behavior of micro and nano diffractive optics devices by varying the microstructure of the structure and the optical wave properties, which can effectively and reasonably modulate the optical wave signal. To study the effect of different parameter structures on the performance of micro-nano diffraction optical devices, in this paper, two three-dimensional array structures of diffractive optical devices are proposed, which are a vertex-intersecting regular tetrahedron structure and a base-intersecting regular frustum structure. Using the Finite-Difference Time-Domain method, the spectroscopic images of the diffractive optics of the constructed micro-nano diffractive devices are studied in the near-infrared band by varying the height of the constructed structures, the type of structures, the wavelength of the incident light waves, and the polarization direction of the light waves in different 3D height coordinates. The effects of different parameter changes on the performance of the micro-nano diffractive optics devices were analyzed by image comparison. The results show that the best diffraction effect is achieved at a structure height of 0.9 μm for both models with different structure types. The study of both structures at this structure height reveals that the location of diffraction occurrence and the intensity of diffraction can be tuned by varying the structure and the relevant parameters such as the polarization of the light wave. This paper has some theoretical applications for the study of high-performance diffractive optics.\",\"PeriodicalId\":18230,\"journal\":{\"name\":\"Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.ms.35151\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.35151","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

衍射光学器件是一种光学器件,入射光的振幅或相位通过基于微纳米材料的结构进行周期性的空间调制。在微纳米领域研究衍射光学器件,可以通过改变结构的微观结构和光波特性来改变微纳米衍射光学器件的光谱行为,从而有效合理地调制光波信号。为了研究不同参数结构对微纳衍射光学器件性能的影响,本文提出了两种衍射光学器件的三维阵列结构,分别是顶点相交正四面体结构和底面相交正挫面结构。利用有限差分时域法,通过改变所构建结构的高度、结构类型、入射光波长以及光波在不同三维高度坐标下的偏振方向,研究了所构建的微纳衍射光学器件在近红外波段的衍射光谱图像。通过图像对比分析了不同参数变化对微纳米衍射光学器件性能的影响。结果表明,不同结构类型的两种模型在结构高度为 0.9 μm 时的衍射效果最佳。在此结构高度下对两种结构的研究表明,衍射发生的位置和衍射强度可以通过改变结构和光波偏振等相关参数来调整。本文对高性能衍射光学的研究具有一定的理论应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-infrared Spectrum Characteristics of Micro-Nano Material Based Diffraction Optical Devices
Diffractive optics devices are optical devices in which the amplitude or phase of the incident light is spatially modulated periodically by a micro-nanomaterial based structure. The study of diffractive optics devices in the field of micro and nano can change the spectroscopic behavior of micro and nano diffractive optics devices by varying the microstructure of the structure and the optical wave properties, which can effectively and reasonably modulate the optical wave signal. To study the effect of different parameter structures on the performance of micro-nano diffraction optical devices, in this paper, two three-dimensional array structures of diffractive optical devices are proposed, which are a vertex-intersecting regular tetrahedron structure and a base-intersecting regular frustum structure. Using the Finite-Difference Time-Domain method, the spectroscopic images of the diffractive optics of the constructed micro-nano diffractive devices are studied in the near-infrared band by varying the height of the constructed structures, the type of structures, the wavelength of the incident light waves, and the polarization direction of the light waves in different 3D height coordinates. The effects of different parameter changes on the performance of the micro-nano diffractive optics devices were analyzed by image comparison. The results show that the best diffraction effect is achieved at a structure height of 0.9 μm for both models with different structure types. The study of both structures at this structure height reveals that the location of diffraction occurrence and the intensity of diffraction can be tuned by varying the structure and the relevant parameters such as the polarization of the light wave. This paper has some theoretical applications for the study of high-performance diffractive optics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science
Materials Science 工程技术-材料科学:综合
CiteScore
1.60
自引率
44.40%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信