具有哈代-索博列夫临界指数的加权 p 拉普拉斯方程的正解

IF 1 3区 数学 Q1 MATHEMATICS
Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo
{"title":"具有哈代-索博列夫临界指数的加权 p 拉普拉斯方程的正解","authors":"Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo","doi":"10.1007/s40840-024-01657-9","DOIUrl":null,"url":null,"abstract":"<p>Here, considering <span>\\(-\\infty&lt;a&lt;\\frac{N-p}{p}\\)</span>, <span>\\(a\\le e\\le a+1\\)</span>, <span>\\(d=1+a-e\\)</span> and <span>\\(p^*:=p^*(a,e)=\\frac{Np}{N-dp}\\)</span>, the existence of positive solution of a weighted <i>p</i>-Laplace equation involving vanishing potentials </p><span>$$\\begin{aligned} -\\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \\end{aligned}$$</span><p>in <span>\\({\\mathbb {R}}^N\\)</span> is proved, where the potential <i>V</i> can vanish at infinity with exponential decay and <i>f</i> is a function with subcritical growth of class <span>\\(C^1\\)</span>. We use Del Pino &amp; Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in <span>\\( L^{\\infty }({\\mathbb {R}}^N). \\)</span></p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Positive Solution for a Weighted p-Laplace Equation with Hardy–Sobolev’s Critical Exponent\",\"authors\":\"Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo\",\"doi\":\"10.1007/s40840-024-01657-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, considering <span>\\\\(-\\\\infty&lt;a&lt;\\\\frac{N-p}{p}\\\\)</span>, <span>\\\\(a\\\\le e\\\\le a+1\\\\)</span>, <span>\\\\(d=1+a-e\\\\)</span> and <span>\\\\(p^*:=p^*(a,e)=\\\\frac{Np}{N-dp}\\\\)</span>, the existence of positive solution of a weighted <i>p</i>-Laplace equation involving vanishing potentials </p><span>$$\\\\begin{aligned} -\\\\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \\\\end{aligned}$$</span><p>in <span>\\\\({\\\\mathbb {R}}^N\\\\)</span> is proved, where the potential <i>V</i> can vanish at infinity with exponential decay and <i>f</i> is a function with subcritical growth of class <span>\\\\(C^1\\\\)</span>. We use Del Pino &amp; Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in <span>\\\\( L^{\\\\infty }({\\\\mathbb {R}}^N). \\\\)</span></p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01657-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01657-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Here, considering\(-\infty<a<\frac{N-p}{p}\),\(a\le e\le a+1\),\(d=1+a-e\) and\(p^*:=p^*(a,e)=\frac{Np}{N-dp}\),证明了在\({\mathbb {R}}^N\) 中存在涉及消失势的加权 p 拉普拉斯方程的正解 $$\begin{aligned} -\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \end{aligned}$$、其中,势 V 可以以指数衰减的方式在无穷大处消失,而 f 是类\(C^1\)的次临界增长函数。我们利用 Del Pino & Felmer 的论证克服了紧凑性的不足,并利用 Moser 迭代法和 Caffarelli-Kohn-Nirenberg 不等式得到了 \( L^{infty }({\mathbb {R}}^N).\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Positive Solution for a Weighted p-Laplace Equation with Hardy–Sobolev’s Critical Exponent

Here, considering \(-\infty<a<\frac{N-p}{p}\), \(a\le e\le a+1\), \(d=1+a-e\) and \(p^*:=p^*(a,e)=\frac{Np}{N-dp}\), the existence of positive solution of a weighted p-Laplace equation involving vanishing potentials

$$\begin{aligned} -\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \end{aligned}$$

in \({\mathbb {R}}^N\) is proved, where the potential V can vanish at infinity with exponential decay and f is a function with subcritical growth of class \(C^1\). We use Del Pino & Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in \( L^{\infty }({\mathbb {R}}^N). \)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信