Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo
{"title":"具有哈代-索博列夫临界指数的加权 p 拉普拉斯方程的正解","authors":"Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo","doi":"10.1007/s40840-024-01657-9","DOIUrl":null,"url":null,"abstract":"<p>Here, considering <span>\\(-\\infty<a<\\frac{N-p}{p}\\)</span>, <span>\\(a\\le e\\le a+1\\)</span>, <span>\\(d=1+a-e\\)</span> and <span>\\(p^*:=p^*(a,e)=\\frac{Np}{N-dp}\\)</span>, the existence of positive solution of a weighted <i>p</i>-Laplace equation involving vanishing potentials </p><span>$$\\begin{aligned} -\\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \\end{aligned}$$</span><p>in <span>\\({\\mathbb {R}}^N\\)</span> is proved, where the potential <i>V</i> can vanish at infinity with exponential decay and <i>f</i> is a function with subcritical growth of class <span>\\(C^1\\)</span>. We use Del Pino & Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in <span>\\( L^{\\infty }({\\mathbb {R}}^N). \\)</span></p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Positive Solution for a Weighted p-Laplace Equation with Hardy–Sobolev’s Critical Exponent\",\"authors\":\"Abdolrahman Razani, Gustavo S. Costa, Giovany M. Figueiredo\",\"doi\":\"10.1007/s40840-024-01657-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, considering <span>\\\\(-\\\\infty<a<\\\\frac{N-p}{p}\\\\)</span>, <span>\\\\(a\\\\le e\\\\le a+1\\\\)</span>, <span>\\\\(d=1+a-e\\\\)</span> and <span>\\\\(p^*:=p^*(a,e)=\\\\frac{Np}{N-dp}\\\\)</span>, the existence of positive solution of a weighted <i>p</i>-Laplace equation involving vanishing potentials </p><span>$$\\\\begin{aligned} -\\\\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \\\\end{aligned}$$</span><p>in <span>\\\\({\\\\mathbb {R}}^N\\\\)</span> is proved, where the potential <i>V</i> can vanish at infinity with exponential decay and <i>f</i> is a function with subcritical growth of class <span>\\\\(C^1\\\\)</span>. We use Del Pino & Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in <span>\\\\( L^{\\\\infty }({\\\\mathbb {R}}^N). \\\\)</span></p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01657-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01657-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Here, considering\(-\infty<a<\frac{N-p}{p}\),\(a\le e\le a+1\),\(d=1+a-e\) and\(p^*:=p^*(a,e)=\frac{Np}{N-dp}\),证明了在\({\mathbb {R}}^N\) 中存在涉及消失势的加权 p 拉普拉斯方程的正解 $$\begin{aligned} -\Delta _{ap}u+V(x)|x|^{-ep^*}|u|^{p-2}u=|x|^{-ep^*}f(u) \end{aligned}$$、其中,势 V 可以以指数衰减的方式在无穷大处消失,而 f 是类\(C^1\)的次临界增长函数。我们利用 Del Pino & Felmer 的论证克服了紧凑性的不足,并利用 Moser 迭代法和 Caffarelli-Kohn-Nirenberg 不等式得到了 \( L^{infty }({\mathbb {R}}^N).\)
A Positive Solution for a Weighted p-Laplace Equation with Hardy–Sobolev’s Critical Exponent
Here, considering \(-\infty<a<\frac{N-p}{p}\), \(a\le e\le a+1\), \(d=1+a-e\) and \(p^*:=p^*(a,e)=\frac{Np}{N-dp}\), the existence of positive solution of a weighted p-Laplace equation involving vanishing potentials
in \({\mathbb {R}}^N\) is proved, where the potential V can vanish at infinity with exponential decay and f is a function with subcritical growth of class \(C^1\). We use Del Pino & Felmer’s arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli–Kohn–Nirenberg inequality to obtain estimates of the solution in \( L^{\infty }({\mathbb {R}}^N). \)
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.