{"title":"退相干条件下受控量子态与目标态之间的距离约束","authors":"Kohei Kobayashi","doi":"10.1088/2399-6528/ad1f74","DOIUrl":null,"url":null,"abstract":"To implement quantum information technologies, carefully designed control for preparing a desired state plays a key role. However, in realistic situation, the actual performance of those methodologies is severely limited by decoherence. Therefore, it is important to evaluate how close we can steer the controlled state to a desired target state under decoherence. In this paper, we provide an upper bound of the distance between the two controlled quantum systems in the presence and absence of decoherence. The bound quantifies the degree of achievement of the control for a given target state under decoherence, and can be straightforwardly calculated without solving any equation. Moreover, the upper bound is applied to derive a theoretical limit of the probability for obtaining the target state under decoherence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bound on the distance between controlled quantum state and target state under decoherence\",\"authors\":\"Kohei Kobayashi\",\"doi\":\"10.1088/2399-6528/ad1f74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To implement quantum information technologies, carefully designed control for preparing a desired state plays a key role. However, in realistic situation, the actual performance of those methodologies is severely limited by decoherence. Therefore, it is important to evaluate how close we can steer the controlled state to a desired target state under decoherence. In this paper, we provide an upper bound of the distance between the two controlled quantum systems in the presence and absence of decoherence. The bound quantifies the degree of achievement of the control for a given target state under decoherence, and can be straightforwardly calculated without solving any equation. Moreover, the upper bound is applied to derive a theoretical limit of the probability for obtaining the target state under decoherence.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad1f74\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad1f74","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bound on the distance between controlled quantum state and target state under decoherence
To implement quantum information technologies, carefully designed control for preparing a desired state plays a key role. However, in realistic situation, the actual performance of those methodologies is severely limited by decoherence. Therefore, it is important to evaluate how close we can steer the controlled state to a desired target state under decoherence. In this paper, we provide an upper bound of the distance between the two controlled quantum systems in the presence and absence of decoherence. The bound quantifies the degree of achievement of the control for a given target state under decoherence, and can be straightforwardly calculated without solving any equation. Moreover, the upper bound is applied to derive a theoretical limit of the probability for obtaining the target state under decoherence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.