基于流的多面体的伯努利工厂

IF 0.9 3区 数学 Q2 MATHEMATICS
Rad Niazadeh, Renato Paes Leme, Jon Schneider
{"title":"基于流的多面体的伯努利工厂","authors":"Rad Niazadeh, Renato Paes Leme, Jon Schneider","doi":"10.1137/23m1558343","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 726-742, March 2024. <br/> Abstract. We construct explicit combinatorial Bernoulli factories for the following class of flow-based polytopes: integral 0/1-polytopes defined by a set of network flow constraints. This generalizes the results of Niazadeh et al. (who constructed an explicit factory for the specific case of bipartite perfect matchings) and provides novel exact sampling procedures for sampling paths, circulations, and [math]-flows. In the process, we uncover new connections to algebraic combinatorics.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernoulli Factories for Flow-Based Polytopes\",\"authors\":\"Rad Niazadeh, Renato Paes Leme, Jon Schneider\",\"doi\":\"10.1137/23m1558343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 726-742, March 2024. <br/> Abstract. We construct explicit combinatorial Bernoulli factories for the following class of flow-based polytopes: integral 0/1-polytopes defined by a set of network flow constraints. This generalizes the results of Niazadeh et al. (who constructed an explicit factory for the specific case of bipartite perfect matchings) and provides novel exact sampling procedures for sampling paths, circulations, and [math]-flows. In the process, we uncover new connections to algebraic combinatorics.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1558343\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1558343","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷,第 1 期,第 726-742 页,2024 年 3 月。 摘要。我们为以下一类基于流的多面体构建了显式组合伯努利工厂:由一组网络流约束定义的积分 0/1 多面体。这推广了 Niazadeh 等人的研究成果(他们为双方格完全匹配的特定情况构建了一个显式工厂),并为路径、循环和 [math] 流的采样提供了新的精确采样程序。在此过程中,我们发现了代数组合学的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernoulli Factories for Flow-Based Polytopes
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 726-742, March 2024.
Abstract. We construct explicit combinatorial Bernoulli factories for the following class of flow-based polytopes: integral 0/1-polytopes defined by a set of network flow constraints. This generalizes the results of Niazadeh et al. (who constructed an explicit factory for the specific case of bipartite perfect matchings) and provides novel exact sampling procedures for sampling paths, circulations, and [math]-flows. In the process, we uncover new connections to algebraic combinatorics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信