{"title":"具有锥形创新和滤波器的线性过程的极限定理","authors":"","doi":"10.1007/s10986-024-09619-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider the partial-sum process <span> <span>\\({\\sum }_{k=1}^{\\left[nt\\right]}{X}_{k}^{\\left(n\\right)},\\)</span> </span> where <span> <span>\\(\\left\\{{X}_{k}^{\\left(n\\right)}={\\sum }_{j=0}^{\\infty }{\\alpha }_{j}^{\\left(n\\right)}{\\xi }_{k-j}\\left(b\\left(n\\right)\\right), k\\in {\\mathbb{Z}}\\right\\},\\)</span> </span> <em>n</em> ≥ 1, is a series of linear processes with tapered filter <span> <span>\\({\\alpha }_{j}^{\\left(n\\right)}={\\alpha }_{j} {1}_{\\left\\{0\\le j\\le\\lambda\\left(n\\right)\\right\\}}\\)</span> </span> and heavy-tailed tapered innovations <em>ξ</em><sub><em>j</em></sub>(<em>b</em>(<em>n</em>)), <em>j ∈</em> Z. Both tapering parameters <em>b</em>(<em>n</em>) and <em>⋋</em> (<em>n</em>) grow to <em>∞</em> as <em>n→∞</em>. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter <em>a</em><sub><em>i</em></sub>, <em>i</em> ≥ 0, and nontapered innovations. We consider the cases where <em>b</em>(<em>n</em>) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of <em>⋋</em>(<em>n</em>) (strong, weak, and moderate tapering).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for linear processes with tapered innovations and filters\",\"authors\":\"\",\"doi\":\"10.1007/s10986-024-09619-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We consider the partial-sum process <span> <span>\\\\({\\\\sum }_{k=1}^{\\\\left[nt\\\\right]}{X}_{k}^{\\\\left(n\\\\right)},\\\\)</span> </span> where <span> <span>\\\\(\\\\left\\\\{{X}_{k}^{\\\\left(n\\\\right)}={\\\\sum }_{j=0}^{\\\\infty }{\\\\alpha }_{j}^{\\\\left(n\\\\right)}{\\\\xi }_{k-j}\\\\left(b\\\\left(n\\\\right)\\\\right), k\\\\in {\\\\mathbb{Z}}\\\\right\\\\},\\\\)</span> </span> <em>n</em> ≥ 1, is a series of linear processes with tapered filter <span> <span>\\\\({\\\\alpha }_{j}^{\\\\left(n\\\\right)}={\\\\alpha }_{j} {1}_{\\\\left\\\\{0\\\\le j\\\\le\\\\lambda\\\\left(n\\\\right)\\\\right\\\\}}\\\\)</span> </span> and heavy-tailed tapered innovations <em>ξ</em><sub><em>j</em></sub>(<em>b</em>(<em>n</em>)), <em>j ∈</em> Z. Both tapering parameters <em>b</em>(<em>n</em>) and <em>⋋</em> (<em>n</em>) grow to <em>∞</em> as <em>n→∞</em>. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter <em>a</em><sub><em>i</em></sub>, <em>i</em> ≥ 0, and nontapered innovations. We consider the cases where <em>b</em>(<em>n</em>) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of <em>⋋</em>(<em>n</em>) (strong, weak, and moderate tapering).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09619-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09619-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Abstract We consider the partial-sum process \({\sum }_{k=1}^{left[nt\right]}{X}_{k}^{left(n\right)}、\其中 \(left\{X}_{k}^{left(n\right)}={sum }_{j=0}^{infty } {alpha }_{j}^{left(n\right)}{xi }_{k-j}\left(b\left(n\right)\right)、kin {\mathbb{Z}}\right\},\) n ≥ 1、是一系列线性过程,具有锥形滤波器 \({\alpha }_{j}^{left(n\right)}={\alpha }_{j} {1}_{\left\{0le jle\lambda\left(n\right)\right}}) 和重尾锥形创新 ξj(b(n)), j∈ Z。当 n→∞ 时,锥形参数 b(n) 和 ⋋ (n) 都增长到 ∞。偏和过程的极限行为(在有限维分布收敛的意义上)取决于这两个渐减参数的增长,以及具有非渐减滤波 ai、i ≥ 0 和非渐减创新的线性过程的依赖特性。我们考虑了 b(n)增长相对较慢(软渐缩)和较快(硬渐缩)的情况,以及⋋(n)增长的所有三种情况(强渐缩、弱渐缩和适度渐缩)。
Limit theorems for linear processes with tapered innovations and filters
Abstract
We consider the partial-sum process \({\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},\) where \(\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},\)n ≥ 1, is a series of linear processes with tapered filter \({\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}\) and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and ⋋ (n) grow to ∞ as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of ⋋(n) (strong, weak, and moderate tapering).