{"title":"大多数奇数度二进制形式无法原始地表示正方形","authors":"Ashvin A. Swaminathan","doi":"10.1112/s0010437x23007649","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span> be a separable integral binary form of odd degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$N \\geq 5$</span></span></img></span></span>. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span> <span>superelliptic equation</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$y^2 = F(x,z)$</span></span></img></span></span> has finitely many primitive integer solutions. In this paper, we consider the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {F}_N(f_0)$</span></span></img></span></span> of degree-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span> superelliptic equations with fixed leading coefficient <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f_0 \\in \\mathbb {Z} \\smallsetminus \\pm \\mathbb {Z}^2$</span></span></img></span></span>, ordered by height. For every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span>, we prove that among equations in the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {F}_N(f_0)$</span></span></img></span></span>, more than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$74.9\\,\\%$</span></span></img></span></span> are insoluble, and more than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$71.8\\,\\%$</span></span></span></span> are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$99.9\\,\\%$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$96.7\\,\\%$</span></span></span></span>, respectively, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$f_0$</span></span></span></span> has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}$</span></span></span></span> have no rational points.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Most odd-degree binary forms fail to primitively represent a square\",\"authors\":\"Ashvin A. Swaminathan\",\"doi\":\"10.1112/s0010437x23007649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span> be a separable integral binary form of odd degree <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N \\\\geq 5$</span></span></img></span></span>. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span> <span>superelliptic equation</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$y^2 = F(x,z)$</span></span></img></span></span> has finitely many primitive integer solutions. In this paper, we consider the family <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {F}_N(f_0)$</span></span></img></span></span> of degree-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span> superelliptic equations with fixed leading coefficient <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_0 \\\\in \\\\mathbb {Z} \\\\smallsetminus \\\\pm \\\\mathbb {Z}^2$</span></span></img></span></span>, ordered by height. For every sufficiently large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span>, we prove that among equations in the family <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {F}_N(f_0)$</span></span></img></span></span>, more than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$74.9\\\\,\\\\%$</span></span></img></span></span> are insoluble, and more than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$71.8\\\\,\\\\%$</span></span></span></span> are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$99.9\\\\,\\\\%$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$96.7\\\\,\\\\%$</span></span></span></span>, respectively, when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$f_0$</span></span></span></span> has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline15.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}$</span></span></span></span> have no rational points.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007649\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007649","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Most odd-degree binary forms fail to primitively represent a square
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.