大多数奇数度二进制形式无法原始地表示正方形

IF 1.3 1区 数学 Q1 MATHEMATICS
Ashvin A. Swaminathan
{"title":"大多数奇数度二进制形式无法原始地表示正方形","authors":"Ashvin A. Swaminathan","doi":"10.1112/s0010437x23007649","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span> be a separable integral binary form of odd degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$N \\geq 5$</span></span></img></span></span>. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span> <span>superelliptic equation</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$y^2 = F(x,z)$</span></span></img></span></span> has finitely many primitive integer solutions. In this paper, we consider the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {F}_N(f_0)$</span></span></img></span></span> of degree-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span> superelliptic equations with fixed leading coefficient <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f_0 \\in \\mathbb {Z} \\smallsetminus \\pm \\mathbb {Z}^2$</span></span></img></span></span>, ordered by height. For every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$N$</span></span></img></span></span>, we prove that among equations in the family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {F}_N(f_0)$</span></span></img></span></span>, more than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$74.9\\,\\%$</span></span></img></span></span> are insoluble, and more than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$71.8\\,\\%$</span></span></span></span> are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$99.9\\,\\%$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$96.7\\,\\%$</span></span></span></span>, respectively, when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$f_0$</span></span></span></span> has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}$</span></span></span></span> have no rational points.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Most odd-degree binary forms fail to primitively represent a square\",\"authors\":\"Ashvin A. Swaminathan\",\"doi\":\"10.1112/s0010437x23007649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span> be a separable integral binary form of odd degree <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N \\\\geq 5$</span></span></img></span></span>. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span> <span>superelliptic equation</span> <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$y^2 = F(x,z)$</span></span></img></span></span> has finitely many primitive integer solutions. In this paper, we consider the family <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {F}_N(f_0)$</span></span></img></span></span> of degree-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span> superelliptic equations with fixed leading coefficient <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_0 \\\\in \\\\mathbb {Z} \\\\smallsetminus \\\\pm \\\\mathbb {Z}^2$</span></span></img></span></span>, ordered by height. For every sufficiently large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span></img></span></span>, we prove that among equations in the family <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {F}_N(f_0)$</span></span></img></span></span>, more than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$74.9\\\\,\\\\%$</span></span></img></span></span> are insoluble, and more than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$71.8\\\\,\\\\%$</span></span></span></span> are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$99.9\\\\,\\\\%$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$96.7\\\\,\\\\%$</span></span></span></span>, respectively, when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline14.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$f_0$</span></span></span></span> has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240206110652704-0043:S0010437X23007649:S0010437X23007649_inline15.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}$</span></span></span></span> have no rational points.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007649\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007649","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $F$ 是奇数度 $N \geq 5$ 的可分离积分二元形式。达蒙和格兰维尔的一个被称为 "法尔廷斯加ε "的结果意味着度为 $N$ 的超椭圆方程 $y^2 = F(x,z)$ 有有限多个原始整数解。在本文中,我们考虑了在\mathbb {Z} 中具有固定前导系数 $f_0 的 $mathscr {F}_N(f_0)$ 的度$N$超椭圆方程族。\mathbb {Z}^2$,按高度排序。对于每一个足够大的 $N$,我们证明在 $\mathscr {F}_N(f_0)$ 族中,超过 $74.9\,\%$ 的方程是不可解的,超过 $71.8\,\%$ 的方程在任何地方都是局部可解的,但由于布劳尔-马宁障碍(Brauer-Manin obstruction),哈塞原理失效。我们进一步证明,当 $f_0$ 有足够多的奇乘数素除数时,这些比例分别至少上升到 $99.9\,\%$ 和 $96.7\,\%$。我们的结果可以看作是超椭圆方程的 "Faltings plus epsilon "的强渐近形式,并构成了 Bhargava 的类似结果,即在 $\mathbb {Q}$ 上的大多数超椭圆曲线都没有有理点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Most odd-degree binary forms fail to primitively represent a square

Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$ superelliptic equation $y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信