{"title":"索波列夫空间中不均匀边界值问题的可解性","authors":"Vladimir Mikhailets, Olena Atlasiuk","doi":"10.1007/s43037-023-00316-8","DOIUrl":null,"url":null,"abstract":"<p>The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The solvability of inhomogeneous boundary-value problems in Sobolev spaces\",\"authors\":\"Vladimir Mikhailets, Olena Atlasiuk\",\"doi\":\"10.1007/s43037-023-00316-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-023-00316-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00316-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The solvability of inhomogeneous boundary-value problems in Sobolev spaces
The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.