索波列夫空间中不均匀边界值问题的可解性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vladimir Mikhailets, Olena Atlasiuk
{"title":"索波列夫空间中不均匀边界值问题的可解性","authors":"Vladimir Mikhailets, Olena Atlasiuk","doi":"10.1007/s43037-023-00316-8","DOIUrl":null,"url":null,"abstract":"<p>The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The solvability of inhomogeneous boundary-value problems in Sobolev spaces\",\"authors\":\"Vladimir Mikhailets, Olena Atlasiuk\",\"doi\":\"10.1007/s43037-023-00316-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-023-00316-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00316-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是为索波列夫空间中任意阶常微分方程系统的线性非均质界值问题的可解性建立一个一般理论。边界条件允许过定或欠定。它们可能包含未知向量值函数的导数,其整数阶或分数阶超过微分方程的阶数。类似的问题自然会在各种应用中出现。该理论引入了问题的矩形数特征矩阵概念。该矩阵的指数和弗雷德霍姆数分别与非均质界值问题的指数和弗雷德霍姆数重合。与指数不同的是,Fredholm 数(即问题核和共核的维数)即使相对于较小(在常模中)的有限维扰动也是不稳定的。我们给出了可以明确找到特征矩阵的例子。我们还证明了特征矩阵序列的极限定理。具体地说,从该定理可以得出,所研究问题的弗雷德霍姆数在强算子拓扑中是半连续的。这种性质在一般情况下不再有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The solvability of inhomogeneous boundary-value problems in Sobolev spaces

The aim of the paper is to develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of arbitrary order in Sobolev spaces. Boundary conditions are allowed to be overdetermined or underdetermined. They may contain derivatives, of the unknown vector-valued function, whose integer or fractional orders exceed the order of the differential equation. Similar problems arise naturally in various applications. The theory introduces the notion of a rectangular number characteristic matrix of the problem. The index and Fredholm numbers of this matrix coincide, respectively, with the index and Fredholm numbers of the inhomogeneous boundary-value problem. Unlike the index, the Fredholm numbers (i.e., the dimensions of the problem kernel and co-kernel) are unstable even with respect to small (in the norm) finite-dimensional perturbations. We give examples in which the characteristic matrix can be explicitly found. We also prove a limit theorem for a sequence of characteristic matrices. Specifically, it follows from this theorem that the Fredholm numbers of the problems under investigation are semicontinuous in the strong operator topology. Such a property ceases to be valid in the general case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信