利用柯克高阶迭代方案逼近弱充实收缩的定点

IF 1.5 3区 数学 Q1 MATHEMATICS
Mi Zhou, Naeem Saleem, Mujahid Abbas
{"title":"利用柯克高阶迭代方案逼近弱充实收缩的定点","authors":"Mi Zhou, Naeem Saleem, Mujahid Abbas","doi":"10.1186/s13660-024-03097-2","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce two types of weak enriched contractions, namely weak enriched $\\mathcal{F}$ -contraction, weak enriched $\\mathcal{F^{\\prime}}$ -contraction, and k-fold averaged mapping based on Kirk’s iterative algorithm of order k. The types of contractions introduced herein unify, extend, and generalize several existing classes of enriched and weak enriched contraction mappings. Moreover, K-fold averaged mappings can be viewed as a generalization of the averaged mappings and double averaged mappings. We then prove the existence of a unique fixed point of the k-fold averaged mapping associated with weak enriched contractions introduced herein. We study necessary conditions that guarantee the equality of the sets of fixed points of the k-fold averaged mapping and weak enriched contractions. We show that an appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a k-fold averaged mapping and of the two weak enriched contractions. We also study the well-posedness, limit shadowing property, and Ulam–Hyers stability of the k-fold averaged mapping. We provide necessary conditions that ensure the periodic point property of each illustrated weak enriched contraction. Some examples are presented to show that our results are a potential generalization of the comparable results in the existing literature.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating fixed points of weak enriched contractions using Kirk’s iteration scheme of higher order\",\"authors\":\"Mi Zhou, Naeem Saleem, Mujahid Abbas\",\"doi\":\"10.1186/s13660-024-03097-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce two types of weak enriched contractions, namely weak enriched $\\\\mathcal{F}$ -contraction, weak enriched $\\\\mathcal{F^{\\\\prime}}$ -contraction, and k-fold averaged mapping based on Kirk’s iterative algorithm of order k. The types of contractions introduced herein unify, extend, and generalize several existing classes of enriched and weak enriched contraction mappings. Moreover, K-fold averaged mappings can be viewed as a generalization of the averaged mappings and double averaged mappings. We then prove the existence of a unique fixed point of the k-fold averaged mapping associated with weak enriched contractions introduced herein. We study necessary conditions that guarantee the equality of the sets of fixed points of the k-fold averaged mapping and weak enriched contractions. We show that an appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a k-fold averaged mapping and of the two weak enriched contractions. We also study the well-posedness, limit shadowing property, and Ulam–Hyers stability of the k-fold averaged mapping. We provide necessary conditions that ensure the periodic point property of each illustrated weak enriched contraction. Some examples are presented to show that our results are a potential generalization of the comparable results in the existing literature.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03097-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03097-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两种弱富集收缩,即弱富集 $\mathcal{F}$ -收缩、弱富集 $\mathcal{F^/{prime}}$ -收缩以及基于 Kirk 阶迭代算法的 k 折平均映射。本文介绍的收缩类型统一、扩展和概括了现有的几类富集和弱富集收缩映射。此外,K 折平均映射可以看作是平均映射和双平均映射的一般化。然后,我们证明了与本文引入的弱富集收缩相关的 K 折平均映射的唯一定点的存在性。我们研究了保证 k 折平均映射和弱充实收缩的定点集相等的必要条件。我们证明,可以使用适当的柯克迭代算法来逼近 k 折平均映射和两个弱充实收缩的定点。我们还研究了 k 折平均映射的好拟性、极限阴影特性和 Ulam-Hyers 稳定性。我们提供了确保每个图示弱增益收缩的周期点性质的必要条件。我们列举了一些例子来说明我们的结果是对现有文献中类似结果的潜在概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating fixed points of weak enriched contractions using Kirk’s iteration scheme of higher order
In this paper, we introduce two types of weak enriched contractions, namely weak enriched $\mathcal{F}$ -contraction, weak enriched $\mathcal{F^{\prime}}$ -contraction, and k-fold averaged mapping based on Kirk’s iterative algorithm of order k. The types of contractions introduced herein unify, extend, and generalize several existing classes of enriched and weak enriched contraction mappings. Moreover, K-fold averaged mappings can be viewed as a generalization of the averaged mappings and double averaged mappings. We then prove the existence of a unique fixed point of the k-fold averaged mapping associated with weak enriched contractions introduced herein. We study necessary conditions that guarantee the equality of the sets of fixed points of the k-fold averaged mapping and weak enriched contractions. We show that an appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a k-fold averaged mapping and of the two weak enriched contractions. We also study the well-posedness, limit shadowing property, and Ulam–Hyers stability of the k-fold averaged mapping. We provide necessary conditions that ensure the periodic point property of each illustrated weak enriched contraction. Some examples are presented to show that our results are a potential generalization of the comparable results in the existing literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信