Ezgi Kantarcı Oǧuz, Cem Yalım Özel, Mohan Ravichandran
{"title":"链锁多面体和艾哈特等价性","authors":"Ezgi Kantarcı Oǧuz, Cem Yalım Özel, Mohan Ravichandran","doi":"10.1007/s00026-023-00683-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of polytopes that we call chainlink polytopes and show that they allow us to construct infinite families of pairs of non-isomorphic rational polytopes with the same Ehrhart quasipolynomial. Our construction is based on circular fence posets, a recently introduced class of posets, which admit a non-obvious and nontrivial symmetry in their rank sequences. We show that this symmetry can be lifted to the level of polyhedral models (which we call chainlink polytopes) for these posets. Along the way, we introduce the related class of chainlink posets and show that they exhibit analogous nontrivial symmetry properties. We further prove an outstanding conjecture on the unimodality of rank polynomials of circular fence posets.</p>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chainlink Polytopes and Ehrhart Equivalence\",\"authors\":\"Ezgi Kantarcı Oǧuz, Cem Yalım Özel, Mohan Ravichandran\",\"doi\":\"10.1007/s00026-023-00683-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a class of polytopes that we call chainlink polytopes and show that they allow us to construct infinite families of pairs of non-isomorphic rational polytopes with the same Ehrhart quasipolynomial. Our construction is based on circular fence posets, a recently introduced class of posets, which admit a non-obvious and nontrivial symmetry in their rank sequences. We show that this symmetry can be lifted to the level of polyhedral models (which we call chainlink polytopes) for these posets. Along the way, we introduce the related class of chainlink posets and show that they exhibit analogous nontrivial symmetry properties. We further prove an outstanding conjecture on the unimodality of rank polynomials of circular fence posets.</p>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00026-023-00683-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00026-023-00683-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We introduce a class of polytopes that we call chainlink polytopes and show that they allow us to construct infinite families of pairs of non-isomorphic rational polytopes with the same Ehrhart quasipolynomial. Our construction is based on circular fence posets, a recently introduced class of posets, which admit a non-obvious and nontrivial symmetry in their rank sequences. We show that this symmetry can be lifted to the level of polyhedral models (which we call chainlink polytopes) for these posets. Along the way, we introduce the related class of chainlink posets and show that they exhibit analogous nontrivial symmetry properties. We further prove an outstanding conjecture on the unimodality of rank polynomials of circular fence posets.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches