{"title":"纳扎罗夫-波德科里托夫(Nazarov-Podkorytov)定理在$\\tau$$可测算子的非交换空间中的扩展","authors":"","doi":"10.1007/s11117-024-01029-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work, we study a comparison of norms in non-commutative spaces of <span> <span>\\(\\tau \\)</span> </span>-measurable operators associated with a semifinite von Neumann algebra. In particular, we obtain Nazarov–Podkorytov type lemma Nazarov et al. (Complex analysis, operators, and related topics. Operatory theory: advances, vol 113, pp 247–267, 2000) and extend the main results in Astashkin et al. (Math Ann, 2023. <span>https://doi.org/10.1007/s00208-023-02606-w</span>) to non-commutative settings. Moreover, we complete the range of the parameter <em>p</em> for <span> <span>\\(0<p<1.\\)</span> </span></p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of Nazarov–Podkorytov lemma in non-commutative spaces of $$\\\\tau $$ -measurable operators\",\"authors\":\"\",\"doi\":\"10.1007/s11117-024-01029-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this work, we study a comparison of norms in non-commutative spaces of <span> <span>\\\\(\\\\tau \\\\)</span> </span>-measurable operators associated with a semifinite von Neumann algebra. In particular, we obtain Nazarov–Podkorytov type lemma Nazarov et al. (Complex analysis, operators, and related topics. Operatory theory: advances, vol 113, pp 247–267, 2000) and extend the main results in Astashkin et al. (Math Ann, 2023. <span>https://doi.org/10.1007/s00208-023-02606-w</span>) to non-commutative settings. Moreover, we complete the range of the parameter <em>p</em> for <span> <span>\\\\(0<p<1.\\\\)</span> </span></p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01029-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01029-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 在这项工作中,我们研究了与(\tau \)半有限 von Neumann 代数相关的可测算子的非交换空间中的规范比较。特别是,我们得到了 Nazarov-Podkorytov 型 Lemma Nazarov 等人 (Complex analysis, operators, and related topics.运算理论:进展,第 113 卷,第 247-267 页,2000 年),并将阿斯塔什金等人(Math Ann, 2023. https://doi.org/10.1007/s00208-023-02606-w)的主要结果扩展到非交换环境。此外,我们完成了参数 p 的范围,即 \(0<p<1.\)
Extensions of Nazarov–Podkorytov lemma in non-commutative spaces of $$\tau $$ -measurable operators
Abstract
In this work, we study a comparison of norms in non-commutative spaces of \(\tau \)-measurable operators associated with a semifinite von Neumann algebra. In particular, we obtain Nazarov–Podkorytov type lemma Nazarov et al. (Complex analysis, operators, and related topics. Operatory theory: advances, vol 113, pp 247–267, 2000) and extend the main results in Astashkin et al. (Math Ann, 2023. https://doi.org/10.1007/s00208-023-02606-w) to non-commutative settings. Moreover, we complete the range of the parameter p for \(0<p<1.\)
期刊介绍:
The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome.
The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.