{"title":"熊的生物识别技术:开发懒熊个体识别技术","authors":"","doi":"10.1007/s42991-023-00396-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear <em>Melursus ursinus</em> (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the <em>EfficientNet</em> architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on <em>EfficientNet</em> framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the <em>ex-situ</em> bear database, identifying the conflict individual and estimating bear populations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bear biometrics: developing an individual recognition technique for sloth bears\",\"authors\":\"\",\"doi\":\"10.1007/s42991-023-00396-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear <em>Melursus ursinus</em> (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the <em>EfficientNet</em> architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on <em>EfficientNet</em> framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the <em>ex-situ</em> bear database, identifying the conflict individual and estimating bear populations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42991-023-00396-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42991-023-00396-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bear biometrics: developing an individual recognition technique for sloth bears
Abstract
Identifying individual animals, especially in large mammals, is an important goal for wildlife biologists and managers. Bears, occupying diverse habitats, face and experience significant conflict. Among Asian bears, the sloth bear Melursus ursinus (Shaw, 1791; Vulnerable IUCN Red List) is reported vulnerable due to negative interactions with humans, requiring solutions like identifying bear individuals using morphological features. To do so, we used an image-comparison algorithm to evaluate the uniqueness of chest markings using structural similarity index (SSIM) and trained a deep learning model based on the EfficientNet architecture for predicting an individual bear classification. We collected 1567 images (of 144 bears) to examine individual-level differences in chestmark patterns. The comparison yielded 98% accuracy in differentiating chestmarks as a unique pattern for an individual. Subsequently, we trained a circular classification model based on EfficientNet framework using augmented 5628 images for training (80%; of 115 bears), which was validated over 95% for top one and 99% for five individual predictions on 1407 testing images (20%; of 115 bears). The final step involved passing 58 non-augmented images (of 29 out-of-train bears), and the top five predictions of closely similar patterns suggested by the model were then manually compared for similarities in shapes, which suggested whether the image belonged to a new individual. The high accuracy of comparison and classification models suggests the potential applicability of this technique for helping maintain the ex-situ bear database, identifying the conflict individual and estimating bear populations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.