关于线性扩展数的交叉品猜想

Swee Hong Chan, Igor Pak, Greta Panova
{"title":"关于线性扩展数的交叉品猜想","authors":"Swee Hong Chan, Igor Pak, Greta Panova","doi":"10.4153/s0008414x24000087","DOIUrl":null,"url":null,"abstract":"<p>We prove a weak version of the <span>cross-product conjecture</span>: <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k+1,\\ell ) \\hskip .06cm \\textrm {F}(k,\\ell +1) \\ge (\\frac 12+\\varepsilon ) \\hskip .06cm \\textrm {F}(k,\\ell ) \\hskip .06cm \\textrm {F}(k+1,\\ell +1)$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k,\\ell )$</span></span></img></span></span> is the number of linear extensions for which the values at fixed elements <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$x,y,z$</span></span></img></span></span> are <span>k</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell $</span></span></img></span></span> apart, respectively, and where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon&gt;0$</span></span></img></span></span> depends on the poset. We also prove the converse inequality and disprove the <span>generalized cross-product conjecture</span>. The proofs use geometric inequalities for mixed volumes and combinatorics of words.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cross-product conjecture for the number of linear extensions\",\"authors\":\"Swee Hong Chan, Igor Pak, Greta Panova\",\"doi\":\"10.4153/s0008414x24000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a weak version of the <span>cross-product conjecture</span>: <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {F}(k+1,\\\\ell ) \\\\hskip .06cm \\\\textrm {F}(k,\\\\ell +1) \\\\ge (\\\\frac 12+\\\\varepsilon ) \\\\hskip .06cm \\\\textrm {F}(k,\\\\ell ) \\\\hskip .06cm \\\\textrm {F}(k+1,\\\\ell +1)$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {F}(k,\\\\ell )$</span></span></img></span></span> is the number of linear extensions for which the values at fixed elements <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x,y,z$</span></span></img></span></span> are <span>k</span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell $</span></span></img></span></span> apart, respectively, and where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varepsilon&gt;0$</span></span></img></span></span> depends on the poset. We also prove the converse inequality and disprove the <span>generalized cross-product conjecture</span>. The proofs use geometric inequalities for mixed volumes and combinatorics of words.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了交叉积猜想的弱版本: $\textrm {F}(k+1,\ell ) \hskip .06cm \textrm {F}(k,\ell +1) \ge (\frac 12+\varepsilon ) \hskip .06cm \textrm {F}(k,\ell ) \hskip .06cm \textrm {F}(k+1,\ell +1)$, 其中 $\textrm {F}(k,\ell )$ 是固定元素 $x,y,z$ 的值分别相距 k 和 $\ell $ 的线性扩展的个数,而 $\varepsilon>0$ 取决于正集。我们还证明了反向不等式,并反证了广义交叉积猜想。证明使用了混合体积的几何不等式和词的组合学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cross-product conjecture for the number of linear extensions

We prove a weak version of the cross-product conjecture: $\textrm {F}(k+1,\ell ) \hskip .06cm \textrm {F}(k,\ell +1) \ge (\frac 12+\varepsilon ) \hskip .06cm \textrm {F}(k,\ell ) \hskip .06cm \textrm {F}(k+1,\ell +1)$, where $\textrm {F}(k,\ell )$ is the number of linear extensions for which the values at fixed elements $x,y,z$ are k and $\ell $ apart, respectively, and where $\varepsilon>0$ depends on the poset. We also prove the converse inequality and disprove the generalized cross-product conjecture. The proofs use geometric inequalities for mixed volumes and combinatorics of words.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信