{"title":"关于线性扩展数的交叉品猜想","authors":"Swee Hong Chan, Igor Pak, Greta Panova","doi":"10.4153/s0008414x24000087","DOIUrl":null,"url":null,"abstract":"<p>We prove a weak version of the <span>cross-product conjecture</span>: <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k+1,\\ell ) \\hskip .06cm \\textrm {F}(k,\\ell +1) \\ge (\\frac 12+\\varepsilon ) \\hskip .06cm \\textrm {F}(k,\\ell ) \\hskip .06cm \\textrm {F}(k+1,\\ell +1)$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k,\\ell )$</span></span></img></span></span> is the number of linear extensions for which the values at fixed elements <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$x,y,z$</span></span></img></span></span> are <span>k</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell $</span></span></img></span></span> apart, respectively, and where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon>0$</span></span></img></span></span> depends on the poset. We also prove the converse inequality and disprove the <span>generalized cross-product conjecture</span>. The proofs use geometric inequalities for mixed volumes and combinatorics of words.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cross-product conjecture for the number of linear extensions\",\"authors\":\"Swee Hong Chan, Igor Pak, Greta Panova\",\"doi\":\"10.4153/s0008414x24000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a weak version of the <span>cross-product conjecture</span>: <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {F}(k+1,\\\\ell ) \\\\hskip .06cm \\\\textrm {F}(k,\\\\ell +1) \\\\ge (\\\\frac 12+\\\\varepsilon ) \\\\hskip .06cm \\\\textrm {F}(k,\\\\ell ) \\\\hskip .06cm \\\\textrm {F}(k+1,\\\\ell +1)$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm {F}(k,\\\\ell )$</span></span></img></span></span> is the number of linear extensions for which the values at fixed elements <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x,y,z$</span></span></img></span></span> are <span>k</span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell $</span></span></img></span></span> apart, respectively, and where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varepsilon>0$</span></span></img></span></span> depends on the poset. We also prove the converse inequality and disprove the <span>generalized cross-product conjecture</span>. The proofs use geometric inequalities for mixed volumes and combinatorics of words.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the cross-product conjecture for the number of linear extensions
We prove a weak version of the cross-product conjecture: $\textrm {F}(k+1,\ell ) \hskip .06cm \textrm {F}(k,\ell +1) \ge (\frac 12+\varepsilon ) \hskip .06cm \textrm {F}(k,\ell ) \hskip .06cm \textrm {F}(k+1,\ell +1)$, where $\textrm {F}(k,\ell )$ is the number of linear extensions for which the values at fixed elements $x,y,z$ are k and $\ell $ apart, respectively, and where $\varepsilon>0$ depends on the poset. We also prove the converse inequality and disprove the generalized cross-product conjecture. The proofs use geometric inequalities for mixed volumes and combinatorics of words.