{"title":"论正态逼近下精确渐近的矩完全收敛性","authors":"L. V. Rozovsky","doi":"10.1137/s0040585x97t991660","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. <br/> For the sums of the form $\\overline I_s(\\varepsilon) = \\sum_{n\\geqslant 1} n^{s-r/2}\\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\,n^\\gamma]$, where $S_n = X_1 +\\dots + X_n$, $X_n$, $n\\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \\geqslant 0$, $r\\geqslant 0$, $\\gamma>1/2$, and $\\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\\geqslant 0$, $\\lim_{\\varepsilon\\searrow 0}\\varepsilon^{2}\\sum_{n\\geqslant 1} n^{-r/2} \\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\, n] =\\mathbf{E} |\\xi|^{r+2}$ if and only if $\\mathbf{E} X=0$ and $\\mathbf{E} X^2=1$, and also $\\mathbf{E}|X|^{2+r/2}<\\infty$ if $r < 4$, $\\mathbf{E}|X|^r<\\infty$ if $r>4$, and $\\mathbf{E} X^4 \\ln{(1+|X|)}<\\infty$ if $r=4$. Here, $\\xi$ is a standard Gaussian r.v.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Complete Convergence of Moments in Exact Asymptotics under Normal Approximation\",\"authors\":\"L. V. Rozovsky\",\"doi\":\"10.1137/s0040585x97t991660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. <br/> For the sums of the form $\\\\overline I_s(\\\\varepsilon) = \\\\sum_{n\\\\geqslant 1} n^{s-r/2}\\\\mathbf{E}|S_n|^r\\\\,\\\\mathbf I[|S_n|\\\\geqslant \\\\varepsilon\\\\,n^\\\\gamma]$, where $S_n = X_1 +\\\\dots + X_n$, $X_n$, $n\\\\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \\\\geqslant 0$, $r\\\\geqslant 0$, $\\\\gamma>1/2$, and $\\\\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\\\\geqslant 0$, $\\\\lim_{\\\\varepsilon\\\\searrow 0}\\\\varepsilon^{2}\\\\sum_{n\\\\geqslant 1} n^{-r/2} \\\\mathbf{E}|S_n|^r\\\\,\\\\mathbf I[|S_n|\\\\geqslant \\\\varepsilon\\\\, n] =\\\\mathbf{E} |\\\\xi|^{r+2}$ if and only if $\\\\mathbf{E} X=0$ and $\\\\mathbf{E} X^2=1$, and also $\\\\mathbf{E}|X|^{2+r/2}<\\\\infty$ if $r < 4$, $\\\\mathbf{E}|X|^r<\\\\infty$ if $r>4$, and $\\\\mathbf{E} X^4 \\\\ln{(1+|X|)}<\\\\infty$ if $r=4$. Here, $\\\\xi$ is a standard Gaussian r.v.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991660\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. 对于和的形式 $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\、n^\gamma]$,其中 $S_n = X_1 +\dots + X_n$,$X_n$,$n\geqslant 1$,是一串独立且同分布的随机变量(r.v.'s) $s+1 \geqslant 0$、$r\geqslant 0$、$\gamma>1/2$ 和 $/varepsilon>0$,提供了关于它们行为的新结果。例如,我们得到了海德结果的以下概括[J. Appl、12 (1975), pp. 173--175]: 对于任意 $r\geqslant 0$, $\lim_{varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E}|\xi|^{r+2}$ if and only if $\mathbf{E}X=0$ 和 $\mathbf{E}X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E}X^4 \ln{(1+|X|)}<\infty$ (如果 $r=4$)。这里,$\xi$ 是标准高斯r.v.
On Complete Convergence of Moments in Exact Asymptotics under Normal Approximation
Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$, where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if $\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E} X^4 \ln{(1+|X|)}<\infty$ if $r=4$. Here, $\xi$ is a standard Gaussian r.v.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.