论正态逼近下精确渐近的矩完全收敛性

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
L. V. Rozovsky
{"title":"论正态逼近下精确渐近的矩完全收敛性","authors":"L. V. Rozovsky","doi":"10.1137/s0040585x97t991660","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. <br/> For the sums of the form $\\overline I_s(\\varepsilon) = \\sum_{n\\geqslant 1} n^{s-r/2}\\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\,n^\\gamma]$, where $S_n = X_1 +\\dots + X_n$, $X_n$, $n\\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \\geqslant 0$, $r\\geqslant 0$, $\\gamma&gt;1/2$, and $\\varepsilon&gt;0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\\geqslant 0$, $\\lim_{\\varepsilon\\searrow 0}\\varepsilon^{2}\\sum_{n\\geqslant 1} n^{-r/2} \\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\, n] =\\mathbf{E} |\\xi|^{r+2}$ if and only if $\\mathbf{E} X=0$ and $\\mathbf{E} X^2=1$, and also $\\mathbf{E}|X|^{2+r/2}&lt;\\infty$ if $r &lt; 4$, $\\mathbf{E}|X|^r&lt;\\infty$ if $r&gt;4$, and $\\mathbf{E} X^4 \\ln{(1+|X|)}&lt;\\infty$ if $r=4$. Here, $\\xi$ is a standard Gaussian r.v.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Complete Convergence of Moments in Exact Asymptotics under Normal Approximation\",\"authors\":\"L. V. Rozovsky\",\"doi\":\"10.1137/s0040585x97t991660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &amp;Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. <br/> For the sums of the form $\\\\overline I_s(\\\\varepsilon) = \\\\sum_{n\\\\geqslant 1} n^{s-r/2}\\\\mathbf{E}|S_n|^r\\\\,\\\\mathbf I[|S_n|\\\\geqslant \\\\varepsilon\\\\,n^\\\\gamma]$, where $S_n = X_1 +\\\\dots + X_n$, $X_n$, $n\\\\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \\\\geqslant 0$, $r\\\\geqslant 0$, $\\\\gamma&gt;1/2$, and $\\\\varepsilon&gt;0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\\\\geqslant 0$, $\\\\lim_{\\\\varepsilon\\\\searrow 0}\\\\varepsilon^{2}\\\\sum_{n\\\\geqslant 1} n^{-r/2} \\\\mathbf{E}|S_n|^r\\\\,\\\\mathbf I[|S_n|\\\\geqslant \\\\varepsilon\\\\, n] =\\\\mathbf{E} |\\\\xi|^{r+2}$ if and only if $\\\\mathbf{E} X=0$ and $\\\\mathbf{E} X^2=1$, and also $\\\\mathbf{E}|X|^{2+r/2}&lt;\\\\infty$ if $r &lt; 4$, $\\\\mathbf{E}|X|^r&lt;\\\\infty$ if $r&gt;4$, and $\\\\mathbf{E} X^4 \\\\ln{(1+|X|)}&lt;\\\\infty$ if $r=4$. Here, $\\\\xi$ is a standard Gaussian r.v.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991660\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. 对于和的形式 $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\、n^\gamma]$,其中 $S_n = X_1 +\dots + X_n$,$X_n$,$n\geqslant 1$,是一串独立且同分布的随机变量(r.v.'s) $s+1 \geqslant 0$、$r\geqslant 0$、$\gamma>1/2$ 和 $/varepsilon>0$,提供了关于它们行为的新结果。例如,我们得到了海德结果的以下概括[J. Appl、12 (1975), pp. 173--175]: 对于任意 $r\geqslant 0$, $\lim_{varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E}|\xi|^{r+2}$ if and only if $\mathbf{E}X=0$ 和 $\mathbf{E}X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E}X^4 \ln{(1+|X|)}<\infty$ (如果 $r=4$)。这里,$\xi$ 是标准高斯r.v.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Complete Convergence of Moments in Exact Asymptotics under Normal Approximation
Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024.
For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$, where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if $\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E} X^4 \ln{(1+|X|)}<\infty$ if $r=4$. Here, $\xi$ is a standard Gaussian r.v.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信