随机流固相互作用中的马丁格尔解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dominic Breit, Prince Romeo Mensah, Thamsanqa Castern Moyo
{"title":"随机流固相互作用中的马丁格尔解","authors":"Dominic Breit, Prince Romeo Mensah, Thamsanqa Castern Moyo","doi":"10.1007/s00332-023-10012-4","DOIUrl":null,"url":null,"abstract":"<p>We consider a viscous incompressible fluid interacting with a linearly elastic shell of Koiter type which is located at some part of the boundary. Recently models with stochastic perturbation in the shell equation have been proposed in the literature but only analysed in simplified cases. We investigate the full model with transport noise, where (a part of) the boundary of the fluid domain is randomly moving in time. We prove the existence of a weak martingale solution to the underlying system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Martingale Solutions in Stochastic Fluid–Structure Interaction\",\"authors\":\"Dominic Breit, Prince Romeo Mensah, Thamsanqa Castern Moyo\",\"doi\":\"10.1007/s00332-023-10012-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a viscous incompressible fluid interacting with a linearly elastic shell of Koiter type which is located at some part of the boundary. Recently models with stochastic perturbation in the shell equation have been proposed in the literature but only analysed in simplified cases. We investigate the full model with transport noise, where (a part of) the boundary of the fluid domain is randomly moving in time. We prove the existence of a weak martingale solution to the underlying system.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-10012-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10012-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是粘性不可压缩流体与位于边界某处的 Koiter 型线性弹性壳相互作用的问题。最近有文献提出了壳方程中的随机扰动模型,但只对简化的情况进行了分析。我们研究了带有传输噪声的完整模型,其中流体域的边界(部分)在时间上是随机移动的。我们证明了底层系统存在弱鞅解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Martingale Solutions in Stochastic Fluid–Structure Interaction

We consider a viscous incompressible fluid interacting with a linearly elastic shell of Koiter type which is located at some part of the boundary. Recently models with stochastic perturbation in the shell equation have been proposed in the literature but only analysed in simplified cases. We investigate the full model with transport noise, where (a part of) the boundary of the fluid domain is randomly moving in time. We prove the existence of a weak martingale solution to the underlying system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信