利用深度学习从胸部 CT 检测支气管炎闭塞综合征

Mateusz Kozinski, Doruk Oner, Jakub Gwizdala, Catherine Beigelman, Pascal Fua, Angela Koutsokera, Alessio Casutt, Michele De Palma, john-david Aubert, Horst Bischof, Christophe von Garnier, Sahand Rahi, Martin Urschler, Nahal Mansouri
{"title":"利用深度学习从胸部 CT 检测支气管炎闭塞综合征","authors":"Mateusz Kozinski, Doruk Oner, Jakub Gwizdala, Catherine Beigelman, Pascal Fua, Angela Koutsokera, Alessio Casutt, Michele De Palma, john-david Aubert, Horst Bischof, Christophe von Garnier, Sahand Rahi, Martin Urschler, Nahal Mansouri","doi":"10.1101/2024.02.07.24302414","DOIUrl":null,"url":null,"abstract":"Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease following lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT images. Thus far, deep neural networks (DNNs)\nhave not been used for BOS detection. We optimized a DNN for detection of BOS solely using CT scans by integrating an innovative co-training method for enhanced performance in low-data scenarios. The novel auxiliary task is to predict the temporal precedence of CT scans of BOS patients. We tested our method using CT scans at various stages of inspiration from 75 post-transplant patients, including 26 with BOS. The method achieved a ROC-AUC of 0.90 (95% CI: 0.840-0.953) in distinguishing BOS from non-BOS CT scans. Performance correlated with disease progression, reaching 0.88 ROC-AUC for stage I, 0.91 for stage II, and an outstanding 0.94 for stage III BOS. Importantly, performance parity\nexisted between standard and high-resolution scans. Particularly noteworthy is the DNN's ability to predict BOS in at-risk patients (FEV1 between 80% and 90% of best FEV1) with a robust 0.87 ROC-AUC (CI: 0.735-0.974). Using techniques for visually interpreting the results of deep neural networks, we reveal that our method is especially sensitive to\nhyperlucent areas compatible with air-trapping or bronchiectasis. Our approach shows the potential to improve BOS diagnosis, enabling early detection and management. Detecting BOS from low-resolution scans reduces radiation exposure and using scans at any stage of respiration makes our method more accessible. Additionally, we demonstrate that\ntechniques that limit overfitting are essential to unlocking the power of DNNs in scenarios with scarce training data. Our method may enable clinicians to use DNNs in studies where only a modest number of patients is available.","PeriodicalId":501074,"journal":{"name":"medRxiv - Respiratory Medicine","volume":"308 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Deep Learning to Detect Bronchiolitis Obliterans Syndrome from Chest CT\",\"authors\":\"Mateusz Kozinski, Doruk Oner, Jakub Gwizdala, Catherine Beigelman, Pascal Fua, Angela Koutsokera, Alessio Casutt, Michele De Palma, john-david Aubert, Horst Bischof, Christophe von Garnier, Sahand Rahi, Martin Urschler, Nahal Mansouri\",\"doi\":\"10.1101/2024.02.07.24302414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease following lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT images. Thus far, deep neural networks (DNNs)\\nhave not been used for BOS detection. We optimized a DNN for detection of BOS solely using CT scans by integrating an innovative co-training method for enhanced performance in low-data scenarios. The novel auxiliary task is to predict the temporal precedence of CT scans of BOS patients. We tested our method using CT scans at various stages of inspiration from 75 post-transplant patients, including 26 with BOS. The method achieved a ROC-AUC of 0.90 (95% CI: 0.840-0.953) in distinguishing BOS from non-BOS CT scans. Performance correlated with disease progression, reaching 0.88 ROC-AUC for stage I, 0.91 for stage II, and an outstanding 0.94 for stage III BOS. Importantly, performance parity\\nexisted between standard and high-resolution scans. Particularly noteworthy is the DNN's ability to predict BOS in at-risk patients (FEV1 between 80% and 90% of best FEV1) with a robust 0.87 ROC-AUC (CI: 0.735-0.974). Using techniques for visually interpreting the results of deep neural networks, we reveal that our method is especially sensitive to\\nhyperlucent areas compatible with air-trapping or bronchiectasis. Our approach shows the potential to improve BOS diagnosis, enabling early detection and management. Detecting BOS from low-resolution scans reduces radiation exposure and using scans at any stage of respiration makes our method more accessible. Additionally, we demonstrate that\\ntechniques that limit overfitting are essential to unlocking the power of DNNs in scenarios with scarce training data. Our method may enable clinicians to use DNNs in studies where only a modest number of patients is available.\",\"PeriodicalId\":501074,\"journal\":{\"name\":\"medRxiv - Respiratory Medicine\",\"volume\":\"308 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Respiratory Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.02.07.24302414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.07.24302414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支气管炎闭塞综合征(BOS)是肺移植后的一种纤维化气道疾病,由于 CT 图像的局限性,传统的诊断方法是依靠肺功能测试(PFT)。迄今为止,深度神经网络(DNN)尚未用于 BOS 检测。我们通过整合创新的联合训练方法,优化了 DNN,使其能够仅利用 CT 扫描检测 BOS,从而提高低数据量情况下的性能。新的辅助任务是预测 BOS 患者 CT 扫描的时间优先级。我们使用 75 名移植后患者(包括 26 名 BOS 患者)不同启发阶段的 CT 扫描对我们的方法进行了测试。该方法在区分 BOS 和非 BOS CT 扫描方面的 ROC-AUC 为 0.90(95% CI:0.840-0.953)。该方法的性能与疾病进展相关,一期 BOS 的 ROC-AUC 为 0.88,二期为 0.91,三期为 0.94。重要的是,标准扫描和高分辨率扫描的性能相当。尤其值得一提的是,DNN 能够预测高危患者(FEV1 在最佳 FEV1 的 80% 到 90% 之间)的 BOS,其 ROC-AUC 为 0.87(CI:0.735-0.974)。利用直观解释深度神经网络结果的技术,我们发现我们的方法对与气胸或支气管扩张相适应的半透明区域特别敏感。我们的方法显示出改善 BOS 诊断的潜力,从而实现早期检测和管理。从低分辨率扫描中检测 BOS 可减少辐射暴露,而且在呼吸的任何阶段使用扫描使我们的方法更容易获得。此外,我们还证明了限制过拟合的技术对于在训练数据稀缺的情况下释放 DNN 的威力至关重要。我们的方法可以让临床医生在只有少量患者的研究中使用 DNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Deep Learning to Detect Bronchiolitis Obliterans Syndrome from Chest CT
Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease following lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT images. Thus far, deep neural networks (DNNs) have not been used for BOS detection. We optimized a DNN for detection of BOS solely using CT scans by integrating an innovative co-training method for enhanced performance in low-data scenarios. The novel auxiliary task is to predict the temporal precedence of CT scans of BOS patients. We tested our method using CT scans at various stages of inspiration from 75 post-transplant patients, including 26 with BOS. The method achieved a ROC-AUC of 0.90 (95% CI: 0.840-0.953) in distinguishing BOS from non-BOS CT scans. Performance correlated with disease progression, reaching 0.88 ROC-AUC for stage I, 0.91 for stage II, and an outstanding 0.94 for stage III BOS. Importantly, performance parity existed between standard and high-resolution scans. Particularly noteworthy is the DNN's ability to predict BOS in at-risk patients (FEV1 between 80% and 90% of best FEV1) with a robust 0.87 ROC-AUC (CI: 0.735-0.974). Using techniques for visually interpreting the results of deep neural networks, we reveal that our method is especially sensitive to hyperlucent areas compatible with air-trapping or bronchiectasis. Our approach shows the potential to improve BOS diagnosis, enabling early detection and management. Detecting BOS from low-resolution scans reduces radiation exposure and using scans at any stage of respiration makes our method more accessible. Additionally, we demonstrate that techniques that limit overfitting are essential to unlocking the power of DNNs in scenarios with scarce training data. Our method may enable clinicians to use DNNs in studies where only a modest number of patients is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信