k 阶分数斯凯拉姆过程

Pub Date : 2024-02-12 DOI:10.1007/s10959-024-01314-8
{"title":"k 阶分数斯凯拉姆过程","authors":"","doi":"10.1007/s10959-024-01314-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We introduce and study a fractional version of the Skellam process of order <em>k</em> by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order <em>k</em> (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of FSPoK which are utilized to establish its long-range dependence property. Later, we consider two time-changed versions of the FSPoK. These are obtained by time-changing the FSPoK by an independent Lévy subordinator and its inverse. Some distributional properties and particular cases are discussed for these time-changed processes. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Skellam Process of Order k\",\"authors\":\"\",\"doi\":\"10.1007/s10959-024-01314-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We introduce and study a fractional version of the Skellam process of order <em>k</em> by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order <em>k</em> (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of FSPoK which are utilized to establish its long-range dependence property. Later, we consider two time-changed versions of the FSPoK. These are obtained by time-changing the FSPoK by an independent Lévy subordinator and its inverse. Some distributional properties and particular cases are discussed for these time-changed processes. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01314-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01314-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们介绍并研究了一种分数版的 k 阶斯凯拉姆过程,即用一个独立的反稳定从属器对其进行时变。我们称之为 k 阶分数斯凯拉姆过程(FSPoK)。我们得到了其一维分布的积分表示及其控制的分数微分方程系统。我们推导出了 FSPoK 的概率生成函数、均值、方差和协方差,并利用它们建立了 FSPoK 的长程依赖性。随后,我们考虑了两种时间变化版本的 FSPoK。这两个版本是通过一个独立的莱维从属因子及其逆因子对 FSPoK 进行时变而得到的。我们将讨论这些时变过程的一些分布特性和特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fractional Skellam Process of Order k

Abstract

We introduce and study a fractional version of the Skellam process of order k by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order k (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of FSPoK which are utilized to establish its long-range dependence property. Later, we consider two time-changed versions of the FSPoK. These are obtained by time-changing the FSPoK by an independent Lévy subordinator and its inverse. Some distributional properties and particular cases are discussed for these time-changed processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信