反射群在 $${\mathbb {H}^3}$ 中的周遍非唯一性阶段

Pub Date : 2024-02-15 DOI:10.1007/s10959-024-01313-9
Jan Czajkowski
{"title":"反射群在 $${\\mathbb {H}^3}$ 中的周遍非唯一性阶段","authors":"Jan Czajkowski","doi":"10.1007/s10959-024-01313-9","DOIUrl":null,"url":null,"abstract":"<p>We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space <span>\\({\\mathbb {H}^3}\\)</span> corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that <span>\\(p_c &lt; p_u\\)</span>. This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniqueness Phase of Percolation on Reflection Groups in $${\\\\mathbb {H}^3}$$\",\"authors\":\"Jan Czajkowski\",\"doi\":\"10.1007/s10959-024-01313-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space <span>\\\\({\\\\mathbb {H}^3}\\\\)</span> corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that <span>\\\\(p_c &lt; p_u\\\\)</span>. This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01313-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01313-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了三维双曲空间 \({\mathbb {H}^3}\) 中反射群的 Cayley 图上的伯努利键和站点渗滤,它对应于一个非常大类的 Coxeter 多面体。在这种情况下,我们证明了非空非唯一性渗流相的存在,即 \(p_c < p_u\).这意味着对于伯努利渗滤参数的某些值,渗滤子图中存在无穷多个无限分量。证明依赖于对该图谱半径的上限估计和对其增长率的下限估计。后一个估计值只涉及群的生成数,文章中也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-uniqueness Phase of Percolation on Reflection Groups in $${\mathbb {H}^3}$$

分享
查看原文
Non-uniqueness Phase of Percolation on Reflection Groups in $${\mathbb {H}^3}$$

We consider Bernoulli bond and site percolation on Cayley graphs of reflection groups in the three-dimensional hyperbolic space \({\mathbb {H}^3}\) corresponding to a very large class of Coxeter polyhedra. In such setting, we prove the existence of a non-empty non-uniqueness percolation phase, i.e. that \(p_c < p_u\). This means that for some values of the Bernoulli percolation parameter there are a.s. infinitely many infinite components in the percolation subgraph. The proof relies on upper estimates for the spectral radius of the graph and on a lower estimate for its growth rate. The latter estimate involves only the number of generators of the group and is proved in the article as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信