无漂移项非线性随机热方程的不变度量

Pub Date : 2024-02-15 DOI:10.1007/s10959-023-01302-4
Le Chen, Nicholas Eisenberg
{"title":"无漂移项非线性随机热方程的不变度量","authors":"Le Chen, Nicholas Eisenberg","doi":"10.1007/s10959-023-01302-4","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the long-term behavior of the solution to the nonlinear stochastic heat equation <span>\\(\\frac{\\partial u}{\\partial t} - \\frac{1}{2}\\Delta u = b(u){\\dot{W}}\\)</span>, where <i>b</i> is assumed to be a globally Lipschitz continuous function and the noise <span>\\({\\dot{W}}\\)</span> is a centered and spatially homogeneous Gaussian noise that is white in time. We identify a set of nearly optimal conditions on the initial data, the correlation measure of the noise, and the weight function <span>\\(\\rho \\)</span>, which together guarantee the existence of an invariant measure in the weighted space <span>\\(L^2_\\rho ({\\mathbb {R}}^d)\\)</span>. In particular, our result covers the <i>parabolic Anderson model</i> (i.e., the case when <span>\\(b(u) = \\lambda u\\)</span>) starting from the Dirac delta measure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term\",\"authors\":\"Le Chen, Nicholas Eisenberg\",\"doi\":\"10.1007/s10959-023-01302-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with the long-term behavior of the solution to the nonlinear stochastic heat equation <span>\\\\(\\\\frac{\\\\partial u}{\\\\partial t} - \\\\frac{1}{2}\\\\Delta u = b(u){\\\\dot{W}}\\\\)</span>, where <i>b</i> is assumed to be a globally Lipschitz continuous function and the noise <span>\\\\({\\\\dot{W}}\\\\)</span> is a centered and spatially homogeneous Gaussian noise that is white in time. We identify a set of nearly optimal conditions on the initial data, the correlation measure of the noise, and the weight function <span>\\\\(\\\\rho \\\\)</span>, which together guarantee the existence of an invariant measure in the weighted space <span>\\\\(L^2_\\\\rho ({\\\\mathbb {R}}^d)\\\\)</span>. In particular, our result covers the <i>parabolic Anderson model</i> (i.e., the case when <span>\\\\(b(u) = \\\\lambda u\\\\)</span>) starting from the Dirac delta measure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01302-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01302-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论的是非线性随机热方程 \(\frac{partial u}{\partial t} - \frac{1}{2}\Delta u = b(u){\dot{W}}\) 的解的长期行为,其中假定 b 是一个全局利普希兹连续函数,噪声 \({\dot{W}}\) 是一个在时间上为白的居中且空间上均匀的高斯噪声。我们确定了一组关于初始数据、噪声的相关度和权重函数 \(\rho \)的近乎最优的条件,这些条件共同保证了加权空间 \(L^2_\rho ({\mathbb {R}}^d)\) 中不变度量的存在。特别是,我们的结果涵盖了从狄拉克德尔塔度量出发的抛物线安德森模型(即 \(b(u) = \lambda u\) 的情况)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term

分享
查看原文
Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term

This paper deals with the long-term behavior of the solution to the nonlinear stochastic heat equation \(\frac{\partial u}{\partial t} - \frac{1}{2}\Delta u = b(u){\dot{W}}\), where b is assumed to be a globally Lipschitz continuous function and the noise \({\dot{W}}\) is a centered and spatially homogeneous Gaussian noise that is white in time. We identify a set of nearly optimal conditions on the initial data, the correlation measure of the noise, and the weight function \(\rho \), which together guarantee the existence of an invariant measure in the weighted space \(L^2_\rho ({\mathbb {R}}^d)\). In particular, our result covers the parabolic Anderson model (i.e., the case when \(b(u) = \lambda u\)) starting from the Dirac delta measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信