{"title":"论通过间隙算子的自联合扩展创建新的基本谱","authors":"Alessandro Michelangeli","doi":"10.1007/s43034-024-00319-y","DOIUrl":null,"url":null,"abstract":"<div><p>Given a densely defined and gapped symmetric operator with infinite deficiency index, it is shown how self-adjoint extensions admitting arbitrarily prescribed portions of the gap as essential spectrum are identified and constructed within a general extension scheme. The emergence of new spectrum in the gap by self-adjoint extension is a problem with a long history and recent deep understanding, and yet it remains topical in several recent applications. Whereas it is already an established fact that, in case of infinite deficiency index, any kind of spectrum inside the gap can be generated by a suitable self-adjoint extension, the present discussion has the virtue of showing the clean and simple operator-theoretic mechanism of emergence of such extensions.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On creating new essential spectrum by self-adjoint extension of gapped operators\",\"authors\":\"Alessandro Michelangeli\",\"doi\":\"10.1007/s43034-024-00319-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a densely defined and gapped symmetric operator with infinite deficiency index, it is shown how self-adjoint extensions admitting arbitrarily prescribed portions of the gap as essential spectrum are identified and constructed within a general extension scheme. The emergence of new spectrum in the gap by self-adjoint extension is a problem with a long history and recent deep understanding, and yet it remains topical in several recent applications. Whereas it is already an established fact that, in case of infinite deficiency index, any kind of spectrum inside the gap can be generated by a suitable self-adjoint extension, the present discussion has the virtue of showing the clean and simple operator-theoretic mechanism of emergence of such extensions.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00319-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00319-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On creating new essential spectrum by self-adjoint extension of gapped operators
Given a densely defined and gapped symmetric operator with infinite deficiency index, it is shown how self-adjoint extensions admitting arbitrarily prescribed portions of the gap as essential spectrum are identified and constructed within a general extension scheme. The emergence of new spectrum in the gap by self-adjoint extension is a problem with a long history and recent deep understanding, and yet it remains topical in several recent applications. Whereas it is already an established fact that, in case of infinite deficiency index, any kind of spectrum inside the gap can be generated by a suitable self-adjoint extension, the present discussion has the virtue of showing the clean and simple operator-theoretic mechanism of emergence of such extensions.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.