具有凹凸非线性的准线性薛定谔方程的无限多解

IF 1.7 4区 数学 Q1 Mathematics
Lijuan Chen, Caisheng Chen, Qiang Chen, Yunfeng Wei
{"title":"具有凹凸非线性的准线性薛定谔方程的无限多解","authors":"Lijuan Chen, Caisheng Chen, Qiang Chen, Yunfeng Wei","doi":"10.1186/s13661-023-01805-3","DOIUrl":null,"url":null,"abstract":"In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 $$\\begin{aligned}& -\\Delta _{p}u+V(x) \\vert u \\vert ^{p-2}u-\\Delta _{p}\\bigl( \\vert u \\vert ^{2\\alpha}\\bigr) \\vert u \\vert ^{2\\alpha -2}u= \\lambda h_{1}(x) \\vert u \\vert ^{m-2}u+h_{2}(x) \\vert u \\vert ^{q-2}u, \\\\& \\quad x\\in {\\mathbb{R}}^{N}, \\end{aligned}$$ where $\\Delta _{p}u=\\operatorname{div}(|\\nabla u|^{p-2}\\nabla u)$ , $1< p< N$ , $\\lambda \\ge 0$ , and $1< m< p<2\\alpha p<q<2\\alpha p^{*}=\\frac{2\\alpha pN}{N-p}$ . The functions $V(x)$ , $h_{1}(x)$ , and $h_{2}(x)$ satisfy some suitable conditions. Using variational methods and some special techniques, we prove that there exists $\\lambda _{0}>0$ such that Eq. (0.1) admits infinitely many high energy solutions in $W^{1,p}({\\mathbb{R}}^{N})$ provided that $\\lambda \\in [0,\\lambda _{0}]$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities\",\"authors\":\"Lijuan Chen, Caisheng Chen, Qiang Chen, Yunfeng Wei\",\"doi\":\"10.1186/s13661-023-01805-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 $$\\\\begin{aligned}& -\\\\Delta _{p}u+V(x) \\\\vert u \\\\vert ^{p-2}u-\\\\Delta _{p}\\\\bigl( \\\\vert u \\\\vert ^{2\\\\alpha}\\\\bigr) \\\\vert u \\\\vert ^{2\\\\alpha -2}u= \\\\lambda h_{1}(x) \\\\vert u \\\\vert ^{m-2}u+h_{2}(x) \\\\vert u \\\\vert ^{q-2}u, \\\\\\\\& \\\\quad x\\\\in {\\\\mathbb{R}}^{N}, \\\\end{aligned}$$ where $\\\\Delta _{p}u=\\\\operatorname{div}(|\\\\nabla u|^{p-2}\\\\nabla u)$ , $1< p< N$ , $\\\\lambda \\\\ge 0$ , and $1< m< p<2\\\\alpha p<q<2\\\\alpha p^{*}=\\\\frac{2\\\\alpha pN}{N-p}$ . The functions $V(x)$ , $h_{1}(x)$ , and $h_{2}(x)$ satisfy some suitable conditions. Using variational methods and some special techniques, we prove that there exists $\\\\lambda _{0}>0$ such that Eq. (0.1) admits infinitely many high energy solutions in $W^{1,p}({\\\\mathbb{R}}^{N})$ provided that $\\\\lambda \\\\in [0,\\\\lambda _{0}]$ .\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01805-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-023-01805-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了以下具有参数 α 和凹凸非线性的准线性薛定谔方程的无穷多个解的存在性: 0.1 $$\begin{aligned}& -\Delta _{p}u+V(x) \vert u \vert ^{p-2}u-\Delta _{p}\bigl( \vert u \vert ^{2\alpha}\bigr) \vert u \vert ^{2\alpha -2}u= \lambda h_{1}(x) \vert u \vert ^{m-2}u+h_{2}(x) \vert u \vert ^{q-2}u、\& \quad x\in {\mathbb{R}}^{N}, \end{aligned}$$ 其中 $\Delta _{p}u=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ , $1< p< N$ , $\lambda \ge 0$ , and $1< m< p0$ such that Eq.(0.1) 在$W^{1,p}({\mathbb{R}}^{N})$ 中有无限多的高能解,前提是$\lambda \ in [0,\lambda _{0}]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 $$\begin{aligned}& -\Delta _{p}u+V(x) \vert u \vert ^{p-2}u-\Delta _{p}\bigl( \vert u \vert ^{2\alpha}\bigr) \vert u \vert ^{2\alpha -2}u= \lambda h_{1}(x) \vert u \vert ^{m-2}u+h_{2}(x) \vert u \vert ^{q-2}u, \\& \quad x\in {\mathbb{R}}^{N}, \end{aligned}$$ where $\Delta _{p}u=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ , $1< p< N$ , $\lambda \ge 0$ , and $1< m< p<2\alpha p0$ such that Eq. (0.1) admits infinitely many high energy solutions in $W^{1,p}({\mathbb{R}}^{N})$ provided that $\lambda \in [0,\lambda _{0}]$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信