{"title":"克雷因空间中的希尔伯特-波利亚算子","authors":"V. V. Kapustin","doi":"10.1134/s0037446624010087","DOIUrl":null,"url":null,"abstract":"<p>We construct some class of selfadjoint operators in the Krein spaces consisting of functions on\nthe straight line <span>\\( \\{\\operatorname{Re}s=\\frac{1}{2}\\} \\)</span>.\nEach of these operators is a rank-one perturbation of a selfadjoint operator\nin the corresponding Hilbert space\nand has eigenvalues complex numbers of the form <span>\\( \\frac{1}{s(1-s)} \\)</span>,\nwhere <span>\\( s \\)</span> ranges over the set of nontrivial zeros of the Riemann zeta-function.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert–Pólya Operators in Krein Spaces\",\"authors\":\"V. V. Kapustin\",\"doi\":\"10.1134/s0037446624010087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct some class of selfadjoint operators in the Krein spaces consisting of functions on\\nthe straight line <span>\\\\( \\\\{\\\\operatorname{Re}s=\\\\frac{1}{2}\\\\} \\\\)</span>.\\nEach of these operators is a rank-one perturbation of a selfadjoint operator\\nin the corresponding Hilbert space\\nand has eigenvalues complex numbers of the form <span>\\\\( \\\\frac{1}{s(1-s)} \\\\)</span>,\\nwhere <span>\\\\( s \\\\)</span> ranges over the set of nontrivial zeros of the Riemann zeta-function.</p>\",\"PeriodicalId\":49533,\"journal\":{\"name\":\"Siberian Mathematical Journal\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624010087\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624010087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We construct some class of selfadjoint operators in the Krein spaces consisting of functions on
the straight line \( \{\operatorname{Re}s=\frac{1}{2}\} \).
Each of these operators is a rank-one perturbation of a selfadjoint operator
in the corresponding Hilbert space
and has eigenvalues complex numbers of the form \( \frac{1}{s(1-s)} \),
where \( s \) ranges over the set of nontrivial zeros of the Riemann zeta-function.
期刊介绍:
Siberian Mathematical Journal is journal published in collaboration with the Sobolev Institute of Mathematics in Novosibirsk. The journal publishes the results of studies in various branches of mathematics.