{"title":"论拉盖尔-索博列夫多项式中傅里叶级数的近似性质","authors":"R. M. Gadzhimirzaev","doi":"10.1134/s003744662401004x","DOIUrl":null,"url":null,"abstract":"<p>Considering the approximation of a function <span>\\( f \\)</span> from a Sobolev space\nby the partial sums of Fourier series in a system of Sobolev orthogonal polynomials\ngenerated by classical Laguerre polynomials,\nwe obtain an estimate for the convergence rate of the partial sums to <span>\\( f \\)</span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Approximative Properties of Fourier Series in Laguerre–Sobolev Polynomials\",\"authors\":\"R. M. Gadzhimirzaev\",\"doi\":\"10.1134/s003744662401004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the approximation of a function <span>\\\\( f \\\\)</span> from a Sobolev space\\nby the partial sums of Fourier series in a system of Sobolev orthogonal polynomials\\ngenerated by classical Laguerre polynomials,\\nwe obtain an estimate for the convergence rate of the partial sums to <span>\\\\( f \\\\)</span>.</p>\",\"PeriodicalId\":49533,\"journal\":{\"name\":\"Siberian Mathematical Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s003744662401004x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s003744662401004x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
考虑到用经典拉盖尔多项式生成的索波列夫正交多项式系统中的傅里叶级数部分和来逼近来自索波列夫空间的函数 \( f \),我们得到了部分和对\( f \)的收敛率的估计值。
On the Approximative Properties of Fourier Series in Laguerre–Sobolev Polynomials
Considering the approximation of a function \( f \) from a Sobolev space
by the partial sums of Fourier series in a system of Sobolev orthogonal polynomials
generated by classical Laguerre polynomials,
we obtain an estimate for the convergence rate of the partial sums to \( f \).
期刊介绍:
Siberian Mathematical Journal is journal published in collaboration with the Sobolev Institute of Mathematics in Novosibirsk. The journal publishes the results of studies in various branches of mathematics.