{��}^{d}和{��}^{d}的幂律收敛率谱标准

Pub Date : 2024-02-07 DOI:10.1134/s0037446624010099
A. G. Kachurovskii, I. V. Podvigin, V. È. Todikov, A. Zh. Khakimbaev
{"title":"{��}^{d}和{��}^{d}的幂律收敛率谱标准","authors":"A. G. Kachurovskii, I. V. Podvigin, V. È. Todikov, A. Zh. Khakimbaev","doi":"10.1134/s0037446624010099","DOIUrl":null,"url":null,"abstract":"<p>We prove the equivalence of the power-law convergence rate in the <span>\\( L_{2} \\)</span>-norm\nof ergodic averages for <span>\\( {𝕑}^{d} \\)</span> and <span>\\( {𝕉}^{d} \\)</span> actions and the same\npower-law estimate for the spectral measure of symmetric <span>\\( d \\)</span>-dimensional\nparallelepipeds: for the degrees that are roots of some special symmetric\npolynomial in <span>\\( d \\)</span> variables. Particularly, all possible range\nof power-law rates is covered for <span>\\( d=1 \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for  $ {��}^{d} $ and  $ {��}^{d} $ Actions\",\"authors\":\"A. G. Kachurovskii, I. V. Podvigin, V. È. Todikov, A. Zh. Khakimbaev\",\"doi\":\"10.1134/s0037446624010099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the equivalence of the power-law convergence rate in the <span>\\\\( L_{2} \\\\)</span>-norm\\nof ergodic averages for <span>\\\\( {𝕑}^{d} \\\\)</span> and <span>\\\\( {𝕉}^{d} \\\\)</span> actions and the same\\npower-law estimate for the spectral measure of symmetric <span>\\\\( d \\\\)</span>-dimensional\\nparallelepipeds: for the degrees that are roots of some special symmetric\\npolynomial in <span>\\\\( d \\\\)</span> variables. Particularly, all possible range\\nof power-law rates is covered for <span>\\\\( d=1 \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624010099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624010099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了\( {𝕑}^{d} \)和\( {𝕉}^{d} \)作用的幂律收敛率与对称\( d \)-dimensionalparallelepipeds的谱度量的相同幂律估计值的等价性:d ()变量中某些特殊对称多项式的根的度数。特别是,对于 \( d=1 \),所有可能的幂律率范围都被覆盖了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Spectral Criterion for Power-Law Convergence Rate in the Ergodic Theorem for  $ {��}^{d} $ and  $ {��}^{d} $ Actions

We prove the equivalence of the power-law convergence rate in the \( L_{2} \)-norm of ergodic averages for \( {𝕑}^{d} \) and \( {𝕉}^{d} \) actions and the same power-law estimate for the spectral measure of symmetric \( d \)-dimensional parallelepipeds: for the degrees that are roots of some special symmetric polynomial in \( d \) variables. Particularly, all possible range of power-law rates is covered for \( d=1 \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信