多种对比敏感度函数的主动相互联合估计

Dom CP Marticorena, Quinn Wai Wong, Jake Browning, Ken Wilbur, Pinakin Gunvant Davey, Aaron R Seitz, Jacob R Gardner, Dennis Barbour
{"title":"多种对比敏感度函数的主动相互联合估计","authors":"Dom CP Marticorena, Quinn Wai Wong, Jake Browning, Ken Wilbur, Pinakin Gunvant Davey, Aaron R Seitz, Jacob R Gardner, Dennis Barbour","doi":"10.1101/2024.02.12.24302700","DOIUrl":null,"url":null,"abstract":"Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few. This paper describes a novel kernel for psychometric function estimation that is more flexible than a kernel based on signal detection theory. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"224 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Mutual Conjoint Estimation of Multiple Contrast Sensitivity Functions\",\"authors\":\"Dom CP Marticorena, Quinn Wai Wong, Jake Browning, Ken Wilbur, Pinakin Gunvant Davey, Aaron R Seitz, Jacob R Gardner, Dennis Barbour\",\"doi\":\"10.1101/2024.02.12.24302700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few. This paper describes a novel kernel for psychometric function estimation that is more flexible than a kernel based on signal detection theory. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.\",\"PeriodicalId\":501390,\"journal\":{\"name\":\"medRxiv - Ophthalmology\",\"volume\":\"224 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.02.12.24302700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.12.24302700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非参数对比灵敏度函数(CSF)估算的最新进展在准确性和效率之间做出了新的权衡,这是经典参数估算器所不具备的。这种新框架的另一个优势是能够独立调整估计器的多个方面,以寻求进一步的改进。利用高斯过程进行机器学习 CSF(MLCSF)估计,可以在内核、获取函数和底层任务表示等方面进行设计优化。本文介绍了一种用于心理测量函数估计的新型核,它比基于信号检测理论的核更加灵活。尽管更灵活,但它能产生更高效的估计器。此外,超越纯信息增益的数据采集试验选择也能提高估算质量。最后,在一般 CSF 形状的基础上引入潜变量表征,可以同时估计多个 CSF,例如来自不同眼睛、偏心或亮度的 CSF。本文介绍并量化了新程序比以前的非参数估计程序表现更好的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Mutual Conjoint Estimation of Multiple Contrast Sensitivity Functions
Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few. This paper describes a novel kernel for psychometric function estimation that is more flexible than a kernel based on signal detection theory. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信