{"title":"具有阶数为 5 的烈-无势同一性的各种替代代数的结构","authors":"S. V. Pchelintsev","doi":"10.1134/s0037446624010130","DOIUrl":null,"url":null,"abstract":"<p>We construct an additive basis for a relatively free\nalternative algebra of Lie-nilpotent degree 5,\ndescribe the associative center and core of this algebra, and find\nthe T-generators of the full center.\nAlso, we give some asymptotic estimate for the codimension\nof the T-ideal generated by a commutator of degree 5\nin a free alternative algebra, and find\na finite-dimensional superalgebra that\ngenerates the variety of alternative algebras\nwith the Lie-nilpotency of the selfadjoint operator of degree 5.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of the Variety of Alternative Algebras with the Lie-Nilpotency Identity of Degree 5\",\"authors\":\"S. V. Pchelintsev\",\"doi\":\"10.1134/s0037446624010130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct an additive basis for a relatively free\\nalternative algebra of Lie-nilpotent degree 5,\\ndescribe the associative center and core of this algebra, and find\\nthe T-generators of the full center.\\nAlso, we give some asymptotic estimate for the codimension\\nof the T-ideal generated by a commutator of degree 5\\nin a free alternative algebra, and find\\na finite-dimensional superalgebra that\\ngenerates the variety of alternative algebras\\nwith the Lie-nilpotency of the selfadjoint operator of degree 5.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624010130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624010130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
此外,我们还给出了自由替代代数中 5 度换元所生成的 T 形域的一些渐近估计,并找到了一个有限维超代数,该超代数生成了具有 5 度自结算子的烈零势的各种替代代数。
Structure of the Variety of Alternative Algebras with the Lie-Nilpotency Identity of Degree 5
We construct an additive basis for a relatively free
alternative algebra of Lie-nilpotent degree 5,
describe the associative center and core of this algebra, and find
the T-generators of the full center.
Also, we give some asymptotic estimate for the codimension
of the T-ideal generated by a commutator of degree 5
in a free alternative algebra, and find
a finite-dimensional superalgebra that
generates the variety of alternative algebras
with the Lie-nilpotency of the selfadjoint operator of degree 5.