Junshuai Yan, Yongqian Liu, Hang Meng, Li Li, Xiaoying Ren
{"title":"使用基于 LSTM 的堆叠去噪自动编码器网络和堆叠算法进行风力涡轮发电机早期故障诊断","authors":"Junshuai Yan, Yongqian Liu, Hang Meng, Li Li, Xiaoying Ren","doi":"10.1080/15435075.2024.2315445","DOIUrl":null,"url":null,"abstract":"To reduce the significant economic losses caused by the fault deterioration of wind turbine generators, it is urgent to detect and diagnose the early faults of generators. The existing condition mo...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"234 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind turbine generator early fault diagnosis using LSTM-based stacked denoising autoencoder network and stacking algorithm\",\"authors\":\"Junshuai Yan, Yongqian Liu, Hang Meng, Li Li, Xiaoying Ren\",\"doi\":\"10.1080/15435075.2024.2315445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the significant economic losses caused by the fault deterioration of wind turbine generators, it is urgent to detect and diagnose the early faults of generators. The existing condition mo...\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2024.2315445\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2315445","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Wind turbine generator early fault diagnosis using LSTM-based stacked denoising autoencoder network and stacking algorithm
To reduce the significant economic losses caused by the fault deterioration of wind turbine generators, it is urgent to detect and diagnose the early faults of generators. The existing condition mo...
期刊介绍:
International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.