在量子计算机上从格子 QCD 走向核物理

IF 3.5 4区 物理与天体物理 Q1 Physics and Astronomy
Arata Yamamoto, Takumi Doi
{"title":"在量子计算机上从格子 QCD 走向核物理","authors":"Arata Yamamoto, Takumi Doi","doi":"10.1093/ptep/ptae019","DOIUrl":null,"url":null,"abstract":"One of the ultimate missions of lattice QCD is to simulate atomic nuclei from the first principle of the strong interaction. This is an extremely hard task for the current computational technology, but might be reachable in coming quantum computing era. In this paper, we discuss the computational complexities of classical and quantum simulations of lattice QCD. It is shown that the quantum simulation scales better as a function of a nucleon number and thus will outperform for large nuclei.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward nuclear physics from lattice QCD on quantum computers\",\"authors\":\"Arata Yamamoto, Takumi Doi\",\"doi\":\"10.1093/ptep/ptae019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the ultimate missions of lattice QCD is to simulate atomic nuclei from the first principle of the strong interaction. This is an extremely hard task for the current computational technology, but might be reachable in coming quantum computing era. In this paper, we discuss the computational complexities of classical and quantum simulations of lattice QCD. It is shown that the quantum simulation scales better as a function of a nucleon number and thus will outperform for large nuclei.\",\"PeriodicalId\":20710,\"journal\":{\"name\":\"Progress of Theoretical and Experimental Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical and Experimental Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae019\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae019","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

格子 QCD 的终极任务之一是根据强相互作用的第一原理模拟原子核。这对目前的计算技术来说是一项极其艰巨的任务,但在即将到来的量子计算时代或许可以实现。在本文中,我们讨论了晶格 QCD 的经典模拟和量子模拟的计算复杂性。结果表明,量子模拟在核子数的函数上具有更好的扩展性,因此在大型原子核上会有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward nuclear physics from lattice QCD on quantum computers
One of the ultimate missions of lattice QCD is to simulate atomic nuclei from the first principle of the strong interaction. This is an extremely hard task for the current computational technology, but might be reachable in coming quantum computing era. In this paper, we discuss the computational complexities of classical and quantum simulations of lattice QCD. It is shown that the quantum simulation scales better as a function of a nucleon number and thus will outperform for large nuclei.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress of Theoretical and Experimental Physics
Progress of Theoretical and Experimental Physics PHYSICS, MULTIDISCIPLINARY-PHYSICS, PARTICLES & FIELDS
CiteScore
12.00
自引率
5.70%
发文量
148
审稿时长
17 weeks
期刊介绍: Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan. PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013. PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics. PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信