关于 JO-8 爆炸电磁辐射时空分布的实验和理论研究。

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED
Pengzhao Xu, Ning Zhao, Yukun Chang, Shaokang Cui, Guangsong Ma, Kunlin Shi, Bao Zhang
{"title":"关于 JO-8 爆炸电磁辐射时空分布的实验和理论研究。","authors":"Pengzhao Xu, Ning Zhao, Yukun Chang, Shaokang Cui, Guangsong Ma, Kunlin Shi, Bao Zhang","doi":"10.1002/prep.202300242","DOIUrl":null,"url":null,"abstract":"The detonating fuse in the multistage warhead will be subjected to strong electromagnetic interference, derived from electromagnetic radiation generated by explosion of the shaped charge warhead, which may cause premature detonation or misfire. In order to explore the possible electromagnetic environment surrounded the detonating fuse, the spatial-temporal distribution of electromagnetic radiation after the explosion of JO-8 explosive was investigated in this paper. The electromagnetic radiation signal was collected and its frequency coverage was analyzed in the far-field area by the field blast test. Moreover, based on electromagnetic theory, a theoretical model of electromagnetic radiation generated by the explosion of JO-8 explosive was established, and the spatial-temporal distribution of the electric field intensity was illustrated in detail for several typical positions after the explosion. The better agreement between experimental and theoretical results indicates that the proposed theoretical model and computational method are reasonable. On this basis, the distributions of electric field intensity for different positions and various explosive weights were predicted respectively by using distance and explosive weight as variables. This study is expected to provide a reference for the research on the electromagnetic radiation for explosive explosion and anti-explosive electromagnetic interference.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The experimental and theoretical study on the spatial-temporal distribution of electromagnetic radiation from JO-8 explosions.\",\"authors\":\"Pengzhao Xu, Ning Zhao, Yukun Chang, Shaokang Cui, Guangsong Ma, Kunlin Shi, Bao Zhang\",\"doi\":\"10.1002/prep.202300242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detonating fuse in the multistage warhead will be subjected to strong electromagnetic interference, derived from electromagnetic radiation generated by explosion of the shaped charge warhead, which may cause premature detonation or misfire. In order to explore the possible electromagnetic environment surrounded the detonating fuse, the spatial-temporal distribution of electromagnetic radiation after the explosion of JO-8 explosive was investigated in this paper. The electromagnetic radiation signal was collected and its frequency coverage was analyzed in the far-field area by the field blast test. Moreover, based on electromagnetic theory, a theoretical model of electromagnetic radiation generated by the explosion of JO-8 explosive was established, and the spatial-temporal distribution of the electric field intensity was illustrated in detail for several typical positions after the explosion. The better agreement between experimental and theoretical results indicates that the proposed theoretical model and computational method are reasonable. On this basis, the distributions of electric field intensity for different positions and various explosive weights were predicted respectively by using distance and explosive weight as variables. This study is expected to provide a reference for the research on the electromagnetic radiation for explosive explosion and anti-explosive electromagnetic interference.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202300242\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

多级弹头中的起爆引信将受到来自定型装药弹头爆炸产生的电磁辐射的强烈电磁干扰,可能导致提前起爆或误发。为了探索起爆引信周围可能存在的电磁环境,本文研究了 JO-8 炸药爆炸后电磁辐射的时空分布。通过现场爆炸试验,采集了电磁辐射信号,并分析了其在远场区域的频率覆盖情况。此外,基于电磁理论,建立了 JO-8 炸药爆炸产生电磁辐射的理论模型,并详细说明了爆炸后几个典型位置的电场强度时空分布情况。实验结果与理论结果较好地吻合,表明所提出的理论模型和计算方法是合理的。在此基础上,以距离和炸药重量为变量,分别预测了不同位置和不同炸药重量的电场强度分布。本研究有望为炸药爆炸电磁辐射及抗爆电磁干扰研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The experimental and theoretical study on the spatial-temporal distribution of electromagnetic radiation from JO-8 explosions.

The experimental and theoretical study on the spatial-temporal distribution of electromagnetic radiation from JO-8 explosions.
The detonating fuse in the multistage warhead will be subjected to strong electromagnetic interference, derived from electromagnetic radiation generated by explosion of the shaped charge warhead, which may cause premature detonation or misfire. In order to explore the possible electromagnetic environment surrounded the detonating fuse, the spatial-temporal distribution of electromagnetic radiation after the explosion of JO-8 explosive was investigated in this paper. The electromagnetic radiation signal was collected and its frequency coverage was analyzed in the far-field area by the field blast test. Moreover, based on electromagnetic theory, a theoretical model of electromagnetic radiation generated by the explosion of JO-8 explosive was established, and the spatial-temporal distribution of the electric field intensity was illustrated in detail for several typical positions after the explosion. The better agreement between experimental and theoretical results indicates that the proposed theoretical model and computational method are reasonable. On this basis, the distributions of electric field intensity for different positions and various explosive weights were predicted respectively by using distance and explosive weight as variables. This study is expected to provide a reference for the research on the electromagnetic radiation for explosive explosion and anti-explosive electromagnetic interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信