纳维-斯托克斯方程在 $\big(C((0,T];L^d(\mathbb{R}^d))\cap L\infty((0,T);L^d(\mathbb{R}^d))\big)^d$ 中的温和解的唯一性

Zhirun Zhan
{"title":"纳维-斯托克斯方程在 $\\big(C((0,T];L^d(\\mathbb{R}^d))\\cap L\\infty((0,T);L^d(\\mathbb{R}^d))\\big)^d$ 中的温和解的唯一性","authors":"Zhirun Zhan","doi":"arxiv-2402.01174","DOIUrl":null,"url":null,"abstract":"This paper deals with the uniqueness of mild solutions to the forced or\nunforced Navier-Stokes equations in the whole space. It is known that the\nuniqueness of mild solutions to the unforced Navier-Stokes equations holds in\n$\\big(L^{\\infty}((0,T);L^d(\\mathbb{R}^d))\\big)^d$ when $d\\geq 4$, and in\n$\\big(C([0,T];L^d(\\mathbb{R}^d))\\big)^d$ when $d\\geq3$. As for the forced\nNavier-Stokes equations, when $d\\geq3$ the uniqueness of mild solutions in\n$\\big(C([0,T];L^{d}(\\mathbb{R}^d))\\big)^d$ with force $f$ in some Lorentz space\nis known. In this paper we show that for $d\\geq3$, the uniqueness of mild\nsolutions to the forced Navier-Stokes equations in\n$\\big(C((0,T];L^d(\\mathbb{R}^d))\\cap L^\\infty((0,T);L^d(\\mathbb{R}^d))\\big)^d$\nholds when there is a mild solution in $\\big(C([0,T];L^d(\\mathbb{R}^d))\\big)^d$\nwith the same initial data and force. As a corollary of this result, we\nestablish the uniqueness of mild solutions to the unforced Navier-Stokes\nequations in $\\big(C((0,T];L^3(\\mathbb{R}^3))\\cap\nL^\\infty((0,T);L^3(\\mathbb{R}^3))\\big)^3$.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of mild solutions to the Navier-Stokes equations in $\\\\big(C((0,T];L^d(\\\\mathbb{R}^d))\\\\cap L^\\\\infty((0,T);L^d(\\\\mathbb{R}^d))\\\\big)^d$\",\"authors\":\"Zhirun Zhan\",\"doi\":\"arxiv-2402.01174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the uniqueness of mild solutions to the forced or\\nunforced Navier-Stokes equations in the whole space. It is known that the\\nuniqueness of mild solutions to the unforced Navier-Stokes equations holds in\\n$\\\\big(L^{\\\\infty}((0,T);L^d(\\\\mathbb{R}^d))\\\\big)^d$ when $d\\\\geq 4$, and in\\n$\\\\big(C([0,T];L^d(\\\\mathbb{R}^d))\\\\big)^d$ when $d\\\\geq3$. As for the forced\\nNavier-Stokes equations, when $d\\\\geq3$ the uniqueness of mild solutions in\\n$\\\\big(C([0,T];L^{d}(\\\\mathbb{R}^d))\\\\big)^d$ with force $f$ in some Lorentz space\\nis known. In this paper we show that for $d\\\\geq3$, the uniqueness of mild\\nsolutions to the forced Navier-Stokes equations in\\n$\\\\big(C((0,T];L^d(\\\\mathbb{R}^d))\\\\cap L^\\\\infty((0,T);L^d(\\\\mathbb{R}^d))\\\\big)^d$\\nholds when there is a mild solution in $\\\\big(C([0,T];L^d(\\\\mathbb{R}^d))\\\\big)^d$\\nwith the same initial data and force. As a corollary of this result, we\\nestablish the uniqueness of mild solutions to the unforced Navier-Stokes\\nequations in $\\\\big(C((0,T];L^3(\\\\mathbb{R}^3))\\\\cap\\nL^\\\\infty((0,T);L^3(\\\\mathbb{R}^3))\\\\big)^3$.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.01174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.01174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了强制或非强制纳维-斯托克斯方程的温和解在整个空间中的唯一性。众所周知,当 $d\geq 4$ 时,非强迫纳维-斯托克斯方程的温和解的唯一性在$\big(L^{\infty}((0,T);L^d(\mathbb{R}^d))\big)^d$ 中成立;当 $d\geq3$ 时,温和解的唯一性在$\big(C([0,T];L^d(\mathbb{R}^d))\big)^d$ 中成立。至于受迫纳维尔-斯托克斯方程,当 $d\geq3$ 时,$\big(C([0,T];L^{d}(\mathbb{R}^d))\big^d$ 中的温和解的唯一性与某个洛伦兹空间中的力 $f$ 是已知的。在本文中,我们证明了对于 $d\geq3$,在$\big(C((0,T];L^d(\mathbb{R}^d))\cap L^\infty((0,T);当$\big(C([0,T];L^d(\mathbb{R}^d))\big)^d$中存在温和解且初始数据和作用力相同时,L^d(\mathbb{R}^d))\big)^d$成立。作为这一结果的推论,我们在 $\big(C((0,T];L^3(\mathbb{R}^3))\capL^\infty((0,T);L^3(\mathbb{R}^3))\big^3$ 中建立了非受迫 Navier-Stokesequations 的温和解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of mild solutions to the Navier-Stokes equations in $\big(C((0,T];L^d(\mathbb{R}^d))\cap L^\infty((0,T);L^d(\mathbb{R}^d))\big)^d$
This paper deals with the uniqueness of mild solutions to the forced or unforced Navier-Stokes equations in the whole space. It is known that the uniqueness of mild solutions to the unforced Navier-Stokes equations holds in $\big(L^{\infty}((0,T);L^d(\mathbb{R}^d))\big)^d$ when $d\geq 4$, and in $\big(C([0,T];L^d(\mathbb{R}^d))\big)^d$ when $d\geq3$. As for the forced Navier-Stokes equations, when $d\geq3$ the uniqueness of mild solutions in $\big(C([0,T];L^{d}(\mathbb{R}^d))\big)^d$ with force $f$ in some Lorentz space is known. In this paper we show that for $d\geq3$, the uniqueness of mild solutions to the forced Navier-Stokes equations in $\big(C((0,T];L^d(\mathbb{R}^d))\cap L^\infty((0,T);L^d(\mathbb{R}^d))\big)^d$ holds when there is a mild solution in $\big(C([0,T];L^d(\mathbb{R}^d))\big)^d$ with the same initial data and force. As a corollary of this result, we establish the uniqueness of mild solutions to the unforced Navier-Stokes equations in $\big(C((0,T];L^3(\mathbb{R}^3))\cap L^\infty((0,T);L^3(\mathbb{R}^3))\big)^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信