{"title":"利用最大共形原理研究重夸克极点质量和运行质量之间的关系","authors":"Daniel Salinas-Arizmendi, Iván Schmidt","doi":"10.1093/ptep/ptae020","DOIUrl":null,"url":null,"abstract":"The relation of the pole and running heavy quark masses of order O $(\\alpha _s^4)$ in perturbative quantum chromodynamics (pQCD) can be obtained using the Principle of Maximum Conformality (PMC), a formalism that provides a rigorous method for eliminating renormalization scale and scheme ambiguities for observables in pQCD. Using PMC, an optimal renormalization scale for the heavy quark mass ratio is determined, independent of the renormalization scale and scheme up to order $\\alpha _s^4$. Precise values are then obtained for the PMC pole masses of the heavy quarks $M_b^{\\text{PMC}}=4.86^{+0.03}_{-0.02}$ GeV, $M_t^{\\text{PMC}}=172.3\\pm 0.6$ GeV, and the running mass $\\overline{m}_t^{\\text{PMC}}=162.6\\pm 0.7$ GeV at the PMC scale.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between pole and running masses of heavy quarks using the principle of maximum conformality\",\"authors\":\"Daniel Salinas-Arizmendi, Iván Schmidt\",\"doi\":\"10.1093/ptep/ptae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relation of the pole and running heavy quark masses of order O $(\\\\alpha _s^4)$ in perturbative quantum chromodynamics (pQCD) can be obtained using the Principle of Maximum Conformality (PMC), a formalism that provides a rigorous method for eliminating renormalization scale and scheme ambiguities for observables in pQCD. Using PMC, an optimal renormalization scale for the heavy quark mass ratio is determined, independent of the renormalization scale and scheme up to order $\\\\alpha _s^4$. Precise values are then obtained for the PMC pole masses of the heavy quarks $M_b^{\\\\text{PMC}}=4.86^{+0.03}_{-0.02}$ GeV, $M_t^{\\\\text{PMC}}=172.3\\\\pm 0.6$ GeV, and the running mass $\\\\overline{m}_t^{\\\\text{PMC}}=162.6\\\\pm 0.7$ GeV at the PMC scale.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae020\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Relation between pole and running masses of heavy quarks using the principle of maximum conformality
The relation of the pole and running heavy quark masses of order O $(\alpha _s^4)$ in perturbative quantum chromodynamics (pQCD) can be obtained using the Principle of Maximum Conformality (PMC), a formalism that provides a rigorous method for eliminating renormalization scale and scheme ambiguities for observables in pQCD. Using PMC, an optimal renormalization scale for the heavy quark mass ratio is determined, independent of the renormalization scale and scheme up to order $\alpha _s^4$. Precise values are then obtained for the PMC pole masses of the heavy quarks $M_b^{\text{PMC}}=4.86^{+0.03}_{-0.02}$ GeV, $M_t^{\text{PMC}}=172.3\pm 0.6$ GeV, and the running mass $\overline{m}_t^{\text{PMC}}=162.6\pm 0.7$ GeV at the PMC scale.