全基督教命题表

IF 0.6 3区 数学 Q2 LOGIC
{"title":"全基督教命题表","authors":"","doi":"10.1007/s11225-023-10091-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Ecumenical logic aims to peacefully join classical and intuitionistic logic systems, allowing for reasoning about both classical and intuitionistic statements. This paper presents a semantic tableau for propositional ecumenical logic and proves its soundness and completeness concerning Ecumenical Kripke models. We introduce the Ecumenical Propositional Tableau (<span> <span>\\(E_T\\)</span> </span>) and demonstrate its effectiveness in handling mixed statements.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"34 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecumenical Propositional Tableau\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10091-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Ecumenical logic aims to peacefully join classical and intuitionistic logic systems, allowing for reasoning about both classical and intuitionistic statements. This paper presents a semantic tableau for propositional ecumenical logic and proves its soundness and completeness concerning Ecumenical Kripke models. We introduce the Ecumenical Propositional Tableau (<span> <span>\\\\(E_T\\\\)</span> </span>) and demonstrate its effectiveness in handling mixed statements.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10091-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10091-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 普世逻辑旨在将经典逻辑系统与直觉逻辑系统和平地结合起来,允许对经典语句和直觉语句进行推理。本文提出了普世命题逻辑的语义表,并证明了其关于普世克里普克模型的合理性和完备性。我们介绍了普世命题表(Ecumenical Propositional Tableau),并证明了它在处理混合语句时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecumenical Propositional Tableau

Abstract

Ecumenical logic aims to peacefully join classical and intuitionistic logic systems, allowing for reasoning about both classical and intuitionistic statements. This paper presents a semantic tableau for propositional ecumenical logic and proves its soundness and completeness concerning Ecumenical Kripke models. We introduce the Ecumenical Propositional Tableau ( \(E_T\) ) and demonstrate its effectiveness in handling mixed statements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Logica
Studia Logica MATHEMATICS-LOGIC
CiteScore
1.70
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信