{"title":"对具有非局部逻辑效应的准线性趋化系统的炸毁分析","authors":"Chang-Jian Wang, Jia-Yue Zhu","doi":"10.1007/s40840-024-01659-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following quasilinear chemotaxis system involving nonlocal effect </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} u_{t}=\\nabla \\cdot (\\varphi (u)\\nabla u)-\\nabla \\cdot (u\\nabla v)+\\mu u \\left( 1-\\int _{\\Omega }u^{\\alpha }\\text {d}x\\right) ,\\ {} &{}\\ \\ x\\in \\Omega , \\ t>0,\\\\[2.5mm] 0=\\Delta v-m(t)+u,\\ m(t)=\\frac{1}{|\\Omega |}\\int _{\\Omega } u(x,t)\\text {d}x,\\ {} &{}\\ \\ x\\in \\Omega , \\ t>0,\\\\[2.5mm] u(x,0)=u_{0}(x), \\ {} &{}\\ \\ x\\in \\Omega , \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(\\Omega =B_{R}(0)\\subset {\\mathbb {R}}^n (n\\ge 3)\\)</span> with <span>\\(R>0,\\)</span> the parameters <span>\\(\\mu , \\alpha \\)</span> are positive constants and diffusion function <span>\\( \\varphi (u)\\le C_{0}(1+u)^{-m}\\)</span> for all <span>\\(u\\ge 0\\)</span> with <span>\\(C_{0}>0\\)</span> and <span>\\(m> -1.\\)</span> It has been shown that if </p><span>$$\\begin{aligned} 0<\\alpha <\\min \\left\\{ 2,\\frac{n}{2},\\frac{n(m+1)}{2}\\right\\} , \\end{aligned}$$</span><p>then there exist suitable initial data <span>\\(u_{0}\\)</span> such that the corresponding radially symmetric solution blows up in finite time. In this work, we extend the blow-up result established by previous researchers.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up Analysis to a Quasilinear Chemotaxis System with Nonlocal Logistic Effect\",\"authors\":\"Chang-Jian Wang, Jia-Yue Zhu\",\"doi\":\"10.1007/s40840-024-01659-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the following quasilinear chemotaxis system involving nonlocal effect </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} u_{t}=\\\\nabla \\\\cdot (\\\\varphi (u)\\\\nabla u)-\\\\nabla \\\\cdot (u\\\\nabla v)+\\\\mu u \\\\left( 1-\\\\int _{\\\\Omega }u^{\\\\alpha }\\\\text {d}x\\\\right) ,\\\\ {} &{}\\\\ \\\\ x\\\\in \\\\Omega , \\\\ t>0,\\\\\\\\[2.5mm] 0=\\\\Delta v-m(t)+u,\\\\ m(t)=\\\\frac{1}{|\\\\Omega |}\\\\int _{\\\\Omega } u(x,t)\\\\text {d}x,\\\\ {} &{}\\\\ \\\\ x\\\\in \\\\Omega , \\\\ t>0,\\\\\\\\[2.5mm] u(x,0)=u_{0}(x), \\\\ {} &{}\\\\ \\\\ x\\\\in \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\Omega =B_{R}(0)\\\\subset {\\\\mathbb {R}}^n (n\\\\ge 3)\\\\)</span> with <span>\\\\(R>0,\\\\)</span> the parameters <span>\\\\(\\\\mu , \\\\alpha \\\\)</span> are positive constants and diffusion function <span>\\\\( \\\\varphi (u)\\\\le C_{0}(1+u)^{-m}\\\\)</span> for all <span>\\\\(u\\\\ge 0\\\\)</span> with <span>\\\\(C_{0}>0\\\\)</span> and <span>\\\\(m> -1.\\\\)</span> It has been shown that if </p><span>$$\\\\begin{aligned} 0<\\\\alpha <\\\\min \\\\left\\\\{ 2,\\\\frac{n}{2},\\\\frac{n(m+1)}{2}\\\\right\\\\} , \\\\end{aligned}$$</span><p>then there exist suitable initial data <span>\\\\(u_{0}\\\\)</span> such that the corresponding radially symmetric solution blows up in finite time. In this work, we extend the blow-up result established by previous researchers.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01659-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01659-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了以下涉及非局部效应的准线性趋化系统 $$\begin{aligned}\u_{t}=\nabla \cdot (\varphi (u)\nabla u)-\nabla \cdot (u\nabla v)+\mu u \left( 1-\int _\{Omega }u^{\alpha }\text {d}x\right) ,\ {} &{}\ x\in \Omega , \ t>0,\[2.0=Delta v-m(t)+u,m(t)=frac{1}{|\Omega } u(x,t)\text {d}x,\ {} &{}\\ x\in\Omega , \ t>0,\[2.5mm] u(x,0)=u_{0}(x), \ {} &{}\\ x\in\Omega , \ end{array}\对\end{aligned}$where (Omega =B_{R}(0)/subset {\mathbb {R}}^n (n\ge 3)) with (R>;0,)的参数(\mu , \alpha \)是正常量,扩散函数(\varphi (u)\le C_{0}(1+u)^{-m}\) for all \(u\ge 0) with \(C_{0}>0\) and\(m> -1.\已经证明,如果 $$\begin{aligned} 0<\alpha <min \left\{ 2,\frac{n}{2},\frac{n(m+1)}{2}\right}。end{aligned}$then there exist suitable initial data \(u_{0}\) such that the corresponding radially symmetric solution blows up in finite time.在这项工作中,我们扩展了前人建立的爆炸结果。
where \(\Omega =B_{R}(0)\subset {\mathbb {R}}^n (n\ge 3)\) with \(R>0,\) the parameters \(\mu , \alpha \) are positive constants and diffusion function \( \varphi (u)\le C_{0}(1+u)^{-m}\) for all \(u\ge 0\) with \(C_{0}>0\) and \(m> -1.\) It has been shown that if
then there exist suitable initial data \(u_{0}\) such that the corresponding radially symmetric solution blows up in finite time. In this work, we extend the blow-up result established by previous researchers.
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.