大型量子系统的优化控制:评估 GRAPE 的内存和运行性能

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
Yunwei Lu, Sandeep Joshi, Vinh San Dinh, Jens Koch
{"title":"大型量子系统的优化控制:评估 GRAPE 的内存和运行性能","authors":"Yunwei Lu, Sandeep Joshi, Vinh San Dinh, Jens Koch","doi":"10.1088/2399-6528/ad22e5","DOIUrl":null,"url":null,"abstract":"Gradient Ascent Pulse Engineering (GRAPE) is a popular technique in quantum optimal control, and can be combined with automatic differentiation (AD) to facilitate on-the-fly evaluation of cost-function gradients. We illustrate that the convenience of AD comes at a significant memory cost due to the cumulative storage of a large number of states and propagators. For quantum systems of increasing Hilbert space size, this imposes a significant bottleneck. We revisit the strategy of hard-coding gradients in a scheme that fully avoids propagator storage and significantly reduces memory requirements. Separately, we present improvements to numerical state propagation to enhance runtime performance. We benchmark runtime and memory usage and compare this approach to AD-based implementations, with a focus on pushing towards larger Hilbert space sizes. The results confirm that the AD-free approach facilitates the application of optimal control for large quantum systems which would otherwise be difficult to tackle.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"15 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control of large quantum systems: assessing memory and runtime performance of GRAPE\",\"authors\":\"Yunwei Lu, Sandeep Joshi, Vinh San Dinh, Jens Koch\",\"doi\":\"10.1088/2399-6528/ad22e5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gradient Ascent Pulse Engineering (GRAPE) is a popular technique in quantum optimal control, and can be combined with automatic differentiation (AD) to facilitate on-the-fly evaluation of cost-function gradients. We illustrate that the convenience of AD comes at a significant memory cost due to the cumulative storage of a large number of states and propagators. For quantum systems of increasing Hilbert space size, this imposes a significant bottleneck. We revisit the strategy of hard-coding gradients in a scheme that fully avoids propagator storage and significantly reduces memory requirements. Separately, we present improvements to numerical state propagation to enhance runtime performance. We benchmark runtime and memory usage and compare this approach to AD-based implementations, with a focus on pushing towards larger Hilbert space sizes. The results confirm that the AD-free approach facilitates the application of optimal control for large quantum systems which would otherwise be difficult to tackle.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad22e5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad22e5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

梯度上升脉冲工程(GRAPE)是量子优化控制领域的一种流行技术,它可以与自动微分(AD)相结合,以方便对代价函数梯度进行即时评估。我们的研究表明,自动微分的便利性需要付出巨大的内存代价,因为需要累积存储大量的状态和传播者。对于希尔伯特空间大小不断增大的量子系统来说,这是一个显著的瓶颈。我们重新审视了硬编码梯度的策略,该方案完全避免了传播者的存储,并显著降低了内存需求。另外,我们对数值状态传播进行了改进,以提高运行时性能。我们对运行时间和内存使用情况进行了基准测试,并将这种方法与基于 AD 的实现方法进行了比较,重点是向更大的希尔伯特空间尺寸推进。结果证实,无 AD 方法促进了大型量子系统最优控制的应用,否则很难解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of large quantum systems: assessing memory and runtime performance of GRAPE
Gradient Ascent Pulse Engineering (GRAPE) is a popular technique in quantum optimal control, and can be combined with automatic differentiation (AD) to facilitate on-the-fly evaluation of cost-function gradients. We illustrate that the convenience of AD comes at a significant memory cost due to the cumulative storage of a large number of states and propagators. For quantum systems of increasing Hilbert space size, this imposes a significant bottleneck. We revisit the strategy of hard-coding gradients in a scheme that fully avoids propagator storage and significantly reduces memory requirements. Separately, we present improvements to numerical state propagation to enhance runtime performance. We benchmark runtime and memory usage and compare this approach to AD-based implementations, with a focus on pushing towards larger Hilbert space sizes. The results confirm that the AD-free approach facilitates the application of optimal control for large quantum systems which would otherwise be difficult to tackle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信