{"title":"用总自旋读出饱和单轴扭转量子克拉梅尔-拉奥约束","authors":"T J Volkoff, Michael J Martin","doi":"10.1088/2399-6528/ad1dc8","DOIUrl":null,"url":null,"abstract":"We show that the lowest quantum Cramér-Rao bound achievable in interferometry with a one-axis twisted spin coherent state is saturated by the asymptotic method of moments error of a protocol that uses one call to the one-axis twisting, one call to time-reversed one-axis twisting, and a final total spin measurement (i.e., a twist-untwist protocol). The result is derived by first showing that the metrological phase diagram for one-axis twisting is asymptotically characterized by a single quantum Fisher information value <italic toggle=\"yes\">N</italic>(<italic toggle=\"yes\">N</italic> + 1)/2 for all times, then constructing a twist-untwist protocol having a method of moments error that saturates this value. The case of finite-range one-axis twisting is similarly analyzed, and a simple functional form for the metrological phase diagram is found in both the short-range and long-range interaction regimes. Numerical evidence suggests that the finite-range analogues of twist-untwist protocols can exhibit a method of moments error that asymptotically saturates the lowest quantum Cramér-Rao bound achievable in interferometry with finite-range one-axis twisted spin coherent states for all interaction times.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturating the one-axis twisting quantum Cramér-Rao bound with a total spin readout\",\"authors\":\"T J Volkoff, Michael J Martin\",\"doi\":\"10.1088/2399-6528/ad1dc8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the lowest quantum Cramér-Rao bound achievable in interferometry with a one-axis twisted spin coherent state is saturated by the asymptotic method of moments error of a protocol that uses one call to the one-axis twisting, one call to time-reversed one-axis twisting, and a final total spin measurement (i.e., a twist-untwist protocol). The result is derived by first showing that the metrological phase diagram for one-axis twisting is asymptotically characterized by a single quantum Fisher information value <italic toggle=\\\"yes\\\">N</italic>(<italic toggle=\\\"yes\\\">N</italic> + 1)/2 for all times, then constructing a twist-untwist protocol having a method of moments error that saturates this value. The case of finite-range one-axis twisting is similarly analyzed, and a simple functional form for the metrological phase diagram is found in both the short-range and long-range interaction regimes. Numerical evidence suggests that the finite-range analogues of twist-untwist protocols can exhibit a method of moments error that asymptotically saturates the lowest quantum Cramér-Rao bound achievable in interferometry with finite-range one-axis twisted spin coherent states for all interaction times.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad1dc8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad1dc8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Saturating the one-axis twisting quantum Cramér-Rao bound with a total spin readout
We show that the lowest quantum Cramér-Rao bound achievable in interferometry with a one-axis twisted spin coherent state is saturated by the asymptotic method of moments error of a protocol that uses one call to the one-axis twisting, one call to time-reversed one-axis twisting, and a final total spin measurement (i.e., a twist-untwist protocol). The result is derived by first showing that the metrological phase diagram for one-axis twisting is asymptotically characterized by a single quantum Fisher information value N(N + 1)/2 for all times, then constructing a twist-untwist protocol having a method of moments error that saturates this value. The case of finite-range one-axis twisting is similarly analyzed, and a simple functional form for the metrological phase diagram is found in both the short-range and long-range interaction regimes. Numerical evidence suggests that the finite-range analogues of twist-untwist protocols can exhibit a method of moments error that asymptotically saturates the lowest quantum Cramér-Rao bound achievable in interferometry with finite-range one-axis twisted spin coherent states for all interaction times.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.