与分数热方程有关的稀疏表示

IF 1.2 4区 数学 Q1 MATHEMATICS
Wei Qu, Tao Qian, Ieng Tak Leong, Pengtao Li
{"title":"与分数热方程有关的稀疏表示","authors":"Wei Qu, Tao Qian, Ieng Tak Leong, Pengtao Li","doi":"10.1007/s10473-024-0211-2","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a pre-orthogonal adaptive Fourier decomposition (POAFD) to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre (generalized Poisson equation). As a first step, the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence, and, as a second step, makes use of the semigroup or the reproducing kernel property of each of the expanding entries. Experiments show the effectiveness and efficiency of the proposed series solutions.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sparse representation related with fractional heat equations\",\"authors\":\"Wei Qu, Tao Qian, Ieng Tak Leong, Pengtao Li\",\"doi\":\"10.1007/s10473-024-0211-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a pre-orthogonal adaptive Fourier decomposition (POAFD) to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre (generalized Poisson equation). As a first step, the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence, and, as a second step, makes use of the semigroup or the reproducing kernel property of each of the expanding entries. Experiments show the effectiveness and efficiency of the proposed series solutions.</p>\",\"PeriodicalId\":50998,\"journal\":{\"name\":\"Acta Mathematica Scientia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Scientia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10473-024-0211-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0211-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种预正交自适应傅里叶分解(POAFD)方法,用于获得分数拉普拉斯初值问题和 Caffarelli 与 Silvestre 扩展问题(广义泊松方程)的近似值和数值解。第一步,该方法将初始数据函数扩展为基本解的稀疏序列,并快速收敛;第二步,利用每个扩展项的半群或重现核属性。实验证明了所提出的数列解的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The sparse representation related with fractional heat equations

This study introduces a pre-orthogonal adaptive Fourier decomposition (POAFD) to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre (generalized Poisson equation). As a first step, the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence, and, as a second step, makes use of the semigroup or the reproducing kernel property of each of the expanding entries. Experiments show the effectiveness and efficiency of the proposed series solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信